A: Drug X B: Placebo C: Combination
Change from Change from Change from
Value at Visit Baseline Value at Visit Baseline Value at Visit Baseline
Analysis Visit (N=134) (N=134) (N=134) (N=134) (N=132) (N=132)
———————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————
SCREENING
n 134 0 134 0 132 0
Mean (SD) 99.92 (17.99) NE (NE) 101.88 (21.07) NE (NE) 100.48 (19.07) NE (NE)
Median 99.26 NE 100.22 NE 99.10 NE
Min - Max 54.22 - 152.98 NE - NE 48.15 - 148.03 NE - NE 42.22 - 149.95 NE - NE
BASELINE
n 134 134 132
Mean (SD) 96.50 (19.90) 101.10 (19.87) 102.77 (19.48)
Median 96.05 100.45 102.01
Min - Max 44.28 - 136.59 29.21 - 143.77 49.37 - 153.50
WEEK 1 DAY 8
n 134 134 134 134 132 132
Mean (SD) 100.65 (18.79) 4.14 (26.93) 99.19 (19.36) -1.92 (27.37) 97.14 (19.72) -5.63 (25.95)
Median 100.22 1.52 99.37 -2.79 94.19 -5.57
Min - Max 57.60 - 147.46 -50.92 - 74.84 59.28 - 141.21 -64.50 - 70.93 50.98 - 142.47 -55.15 - 56.11
WEEK 2 DAY 15
n 134 134 134 134 132 132
Mean (SD) 102.09 (19.62) 5.58 (29.38) 99.29 (21.11) -1.81 (31.11) 99.95 (20.85) -2.81 (29.10)
Median 103.59 7.82 100.57 -1.77 102.52 -5.68
Min - Max 54.73 - 150.85 -59.71 - 98.08 51.60 - 145.28 -71.00 - 92.43 37.06 - 138.92 -73.10 - 76.80
WEEK 3 DAY 22
n 134 134 134 134 132 132
Mean (SD) 101.78 (19.54) 5.28 (27.16) 97.73 (19.85) -3.37 (27.76) 99.86 (19.15) -2.91 (27.25)
Median 100.39 6.53 98.83 -5.79 100.06 -1.54
Min - Max 47.68 - 162.22 -64.46 - 76.64 36.25 - 142.78 -70.23 - 84.74 53.80 - 146.37 -74.30 - 67.46
WEEK 4 DAY 29
n 134 134 134 134 132 132
Mean (SD) 100.18 (20.18) 3.68 (27.21) 99.06 (17.75) -2.04 (26.59) 99.27 (20.12) -3.50 (27.62)
Median 98.17 3.00 97.98 -1.89 99.61 -0.46
Min - Max 48.52 - 153.41 -77.30 - 61.90 56.78 - 142.45 -82.96 - 89.87 46.87 - 146.12 -88.68 - 70.90
WEEK 5 DAY 36
n 134 134 134 134 132 132
Mean (SD) 101.42 (18.83) 4.92 (28.02) 95.92 (19.90) -5.19 (29.34) 97.73 (18.92) -5.04 (26.64)
Median 98.56 3.93 94.30 -7.18 98.09 -5.62
Min - Max 62.66 - 155.52 -63.05 - 78.66 51.06 - 151.52 -78.07 - 72.91 51.48 - 157.27 -76.13 - 86.42
Post-Baseline Last
n 134 134 134 134 132 132
Mean (SD) 101.42 (18.83) 4.92 (28.02) 95.92 (19.90) -5.19 (29.34) 97.73 (18.92) -5.04 (26.64)
Median 98.56 3.93 94.30 -7.18 98.09 -5.62
Min - Max 62.66 - 155.52 -63.05 - 78.66 51.06 - 151.52 -78.07 - 72.91 51.48 - 157.27 -76.13 - 86.42
Post-Baseline Minimum
n 134 134 134 134 132 132
Mean (SD) 78.98 (11.94) -17.52 (23.92) 75.77 (13.25) -25.33 (25.39) 76.35 (13.13) -26.41 (22.78)
Median 80.14 -13.96 75.71 -26.70 76.26 -27.17
Min - Max 47.68 - 110.54 -77.30 - 33.00 36.25 - 113.53 -82.96 - 69.23 37.06 - 112.35 -88.68 - 34.24
Post-Baseline Maximum
n 134 134 134 134 132 132
Mean (SD) 125.08 (12.28) 28.57 (23.20) 121.33 (12.01) 20.23 (23.64) 121.42 (12.09) 18.65 (22.74)
Median 124.20 29.14 120.80 18.74 122.55 16.93
Min - Max 94.06 - 162.22 -21.49 - 98.08 94.43 - 151.52 -34.95 - 92.43 79.39 - 157.27 -43.32 - 86.42
Experimental use!
WebR is a tool allowing you to run R code in the web browser. Modify the code below and click run to see the results. Alternatively, copy the code and click here to open WebR in a new tab.
Code
library(tern)library(dplyr)adsl <- random.cdisc.data::cadsladvs <- random.cdisc.data::cadvs# Ensure character variables are converted to factors and empty strings and NAs are explicit missing levels.adsl <-df_explicit_na(adsl)advs <-df_explicit_na(advs)advs_label <-var_labels(advs)advs <- advs %>%filter( PARAMCD =="DIABP", PARAM =="Diastolic Blood Pressure" ) %>%mutate(PARAMCD =droplevels(PARAMCD),PARAM =droplevels(PARAM) )# post-baselineadvs_pb <- advs %>%filter(ABLFL !="Y", ABLFL2 !="Y")advs_pb_max <- advs_pb %>%group_by(PARAM, USUBJID) %>%arrange(desc(AVAL)) %>%slice(1) %>%ungroup() %>%mutate(AVISIT ="Post-Baseline Maximum")advs_pb_min <- advs_pb %>%group_by(PARAM, USUBJID) %>%arrange(AVAL) %>%slice(1) %>%ungroup() %>%mutate(AVISIT ="Post-Baseline Minimum")advs_pb_last <- advs_pb %>%group_by(PARAM, USUBJID) %>%arrange(desc(AVISITN)) %>%slice(1) %>%ungroup() %>%mutate(AVISIT ="Post-Baseline Last")# Please note that for real data, per ADaM Spec 1.1, the advs_f can be obtained by filtering on PARAMCD, then# ANL01FL == 'Y' or AVISIT in c('POST-BASELINE MAXIMUM', 'POST-BASELINE MINIMUM', 'POST-BASELINE LAST')advs_f <-rbind( advs, advs_pb_last, advs_pb_min, advs_pb_max)advs_f <- advs_f %>%mutate(AVISIT =droplevels(AVISIT))var_labels(advs_f) <- advs_label
Warning: The 'plotly_relayout' event tied a source ID of
'teal-main_ui-filter_panel-active-ADVS-filter-ADVS_AVAL-inputs-histogram_plot'
is not registered. In order to obtain this event data, please add
`event_register(p, 'plotly_relayout')` to the plot (`p`) that you wish to
obtain event data from.
Experimental use!
shinylive allow you to modify to run shiny application entirely in the web browser. Modify the code below and click re-run the app to see the results. The performance is slighly worse and some of the features (e.g. downloading) might not work at all.