TLG Catalog - Stable
  • Stable
    • Dev
  1. Graphs
  2. Efficacy
  3. FSTG02
  • Introduction

  • Tables
    • ADA
      • ADAT01
      • ADAT02
      • ADAT03
      • ADAT04A
      • ADAT04B
    • Adverse Events
      • AET01
      • AET01_AESI
      • AET02
      • AET02_SMQ
      • AET03
      • AET04
      • AET04_PI
      • AET05
      • AET05_ALL
      • AET06
      • AET06_SMQ
      • AET07
      • AET09
      • AET09_SMQ
      • AET10
    • Concomitant Medications
      • CMT01
      • CMT01A
      • CMT01B
      • CMT02_PT
    • Deaths
      • DTHT01
    • Demography
      • DMT01
    • Disclosures
      • DISCLOSUREST01
      • EUDRAT01
      • EUDRAT02
    • Disposition
      • DST01
      • PDT01
      • PDT02
    • ECG
      • EGT01
      • EGT02
      • EGT03
      • EGT04
      • EGT05_QTCAT
    • Efficacy
      • AOVT01
      • AOVT02
      • AOVT03
      • CFBT01
      • CMHT01
      • COXT01
      • COXT02
      • DORT01
      • LGRT02
      • MMRMT01
      • ONCT05
      • RATET01
      • RBMIT01
      • RSPT01
      • TTET01
    • Exposure
      • EXT01
    • Lab Results
      • LBT01
      • LBT02
      • LBT03
      • LBT04
      • LBT05
      • LBT06
      • LBT07
      • LBT08
      • LBT09
      • LBT10
      • LBT10_BL
      • LBT11
      • LBT11_BL
      • LBT12
      • LBT12_BL
      • LBT13
      • LBT14
      • LBT15
    • Medical History
      • MHT01
    • Pharmacokinetic
      • PKCT01
      • PKPT02
      • PKPT03
      • PKPT04
      • PKPT05
      • PKPT06
      • PKPT07
      • PKPT08
      • PKPT11
    • Risk Management Plan
      • RMPT01
      • RMPT03
      • RMPT04
      • RMPT05
      • RMPT06
    • Safety
      • ENTXX
    • Vital Signs
      • VST01
      • VST02
  • Listings
    • ADA
      • ADAL02
    • Adverse Events
      • AEL01
      • AEL01_NOLLT
      • AEL02
      • AEL02_ED
      • AEL03
      • AEL04
    • Concomitant Medications
      • CML01
      • CML02A_GL
      • CML02B_GL
    • Development Safety Update Report
      • DSUR4
    • Disposition
      • DSL01
      • DSL02
    • ECG
      • EGL01
    • Efficacy
      • ONCL01
    • Exposure
      • EXL01
    • Lab Results
      • LBL01
      • LBL01_RLS
      • LBL02A
      • LBL02A_RLS
      • LBL02B
    • Medical History
      • MHL01
    • Pharmacokinetic
      • ADAL01
      • PKCL01
      • PKCL02
      • PKPL01
      • PKPL02
      • PKPL04
    • Vital Signs
      • VSL01
  • Graphs
    • Efficacy
      • FSTG01
      • FSTG02
      • KMG01
      • MMRMG01
      • MMRMG02
    • Other
      • BRG01
      • BWG01
      • CIG01
      • IPPG01
      • LTG01
      • MNG01
    • Pharmacokinetic
      • PKCG01
      • PKCG02
      • PKCG03
      • PKPG01
      • PKPG02
      • PKPG03
      • PKPG04
      • PKPG06

  • Appendix
    • Reproducibility

  • Index

On this page

  • Output
  • teal App
  • Reproducibility
    • Timestamp
    • Session Info
    • .lock file
  • Edit this page
  • Report an issue
  1. Graphs
  2. Efficacy
  3. FSTG02

FSTG02

Subgroup Analysis of Survival Duration


Output

  • Standard Plot
  • Plot Specifying Class Variables and
    Options for the Treatment Variable
  • Plot Selecting Columns and
    Changing the Alpha Level
  • Plot with Fixed
    Symbol Size
  • Data Setup
  • Preview
  • Try this using WebR
Code
anl1 <- anl

df <- extract_survival_subgroups(
  variables = list(tte = "AVAL", is_event = "is_event", arm = "ARM", subgroups = c("SEX", "BMRKR2")),
  data = anl1
)

result <- basic_table() %>%
  tabulate_survival_subgroups(
    df = df,
    vars = c("n_tot", "n", "median", "hr", "ci"),
    time_unit = anl1$AVALU[1]
  )
result
                                               B: Placebo               A: Drug X                                    
Baseline Risk Factors           Total n    n    Median (Months)    n    Median (Months)   Hazard Ratio   95% Wald CI 
—————————————————————————————————————————————————————————————————————————————————————————————————————————————————————
All Patients                      268     134         NA          134         NA              1.00       (0.69, 1.44)
Sex                                                                                                                  
  F                               161     82          NA          79          NA              0.79       (0.49, 1.28)
  M                               107     52          NA          55          9.6             1.39       (0.78, 2.47)
Categorical Level Biomarker 2                                                                                        
  LOW                             95      45          NA          50          9.3             1.14       (0.64, 2.02)
  MEDIUM                          93      56          NA          37          NA              0.97       (0.52, 1.82)
  HIGH                            80      33          NA          47          NA              0.97       (0.45, 2.12)
Code
# Add plot.
plot <- g_forest(tbl = result)
plot

Experimental use!

WebR is a tool allowing you to run R code in the web browser. Modify the code below and click run to see the results. Alternatively, copy the code and click here to open WebR in a new tab.

  • Preview
  • Try this using WebR
Code
anl2 <- anl %>%
  mutate(
    # Recode levels of arm.
    ARM = forcats::fct_recode(
      ARM,
      "Placebo" = "B: Placebo",
      "Drug X" = "A: Drug X"
    ),
    # Reorder levels of `SEX`.
    SEX = forcats::fct_relevel(SEX, "M", "F"),
    # Reorder levels of `STRATA1`` by frequency.
    STRATA1 = forcats::fct_infreq(STRATA1)
  )

df <- extract_survival_subgroups(
  variables = list(tte = "AVAL", is_event = "is_event", arm = "ARM", subgroups = c("SEX", "STRATA1")),
  data = anl2
)

result <- basic_table() %>%
  tabulate_survival_subgroups(
    df = df,
    vars = c("n_tot", "n", "median", "hr", "ci"),
    time_unit = anl2$AVALU[1]
  )
result
                                           Placebo                 Drug X                                      
Baseline Risk Factors     Total n    n    Median (Months)    n    Median (Months)   Hazard Ratio   95% Wald CI 
———————————————————————————————————————————————————————————————————————————————————————————————————————————————
All Patients                268     134         NA          134         NA              1.00       (0.69, 1.44)
Sex                                                                                                            
  M                         107     52          NA          55          9.6             1.39       (0.78, 2.47)
  F                         161     82          NA          79          NA              0.79       (0.49, 1.28)
Stratification Factor 1                                                                                        
  C                         94      45          NA          49          NA              0.75       (0.41, 1.38)
  B                         92      45          NA          47          NA              1.34       (0.71, 2.54)
  A                         82      44          NA          38          NA              1.02       (0.53, 1.97)
Code
plot <- g_forest(tbl = result)
plot

Experimental use!

WebR is a tool allowing you to run R code in the web browser. Modify the code below and click run to see the results. Alternatively, copy the code and click here to open WebR in a new tab.

  • Preview
  • Try this using WebR
Code
anl3 <- anl

df <- extract_survival_subgroups(
  variables = list(tte = "AVAL", is_event = "is_event", arm = "ARM", subgroups = c("SEX", "BMRKR2")),
  control = control_coxph(conf_level = 0.9),
  data = anl3
)

result <- basic_table() %>%
  tabulate_survival_subgroups(
    df = df,
    vars = c("n_tot", "hr", "ci")
  )
result
                                                                     
Baseline Risk Factors           Total n   Hazard Ratio   90% Wald CI 
—————————————————————————————————————————————————————————————————————
All Patients                      268         1.00       (0.74, 1.36)
Sex                                                                  
  F                               161         0.79       (0.53, 1.19)
  M                               107         1.39       (0.86, 2.25)
Categorical Level Biomarker 2                                        
  LOW                             95          1.14       (0.71, 1.84)
  MEDIUM                          93          0.97       (0.58, 1.64)
  HIGH                            80          0.97       (0.51, 1.87)
Code
# Add plot.
plot <- g_forest(tbl = result)
plot

Experimental use!

WebR is a tool allowing you to run R code in the web browser. Modify the code below and click run to see the results. Alternatively, copy the code and click here to open WebR in a new tab.

  • Preview
  • Try this using WebR
Code
anl4 <- anl

df <- extract_survival_subgroups(
  variables = list(tte = "AVAL", is_event = "is_event", arm = "ARM", subgroups = c("SEX", "BMRKR2")),
  data = anl4
)

result <- basic_table() %>%
  tabulate_survival_subgroups(
    df = df,
    vars = c("n_tot", "n", "median", "hr", "ci"),
    time_unit = anl4$AVALU[1]
  )
result
                                               B: Placebo               A: Drug X                                    
Baseline Risk Factors           Total n    n    Median (Months)    n    Median (Months)   Hazard Ratio   95% Wald CI 
—————————————————————————————————————————————————————————————————————————————————————————————————————————————————————
All Patients                      268     134         NA          134         NA              1.00       (0.69, 1.44)
Sex                                                                                                                  
  F                               161     82          NA          79          NA              0.79       (0.49, 1.28)
  M                               107     52          NA          55          9.6             1.39       (0.78, 2.47)
Categorical Level Biomarker 2                                                                                        
  LOW                             95      45          NA          50          9.3             1.14       (0.64, 2.02)
  MEDIUM                          93      56          NA          37          NA              0.97       (0.52, 1.82)
  HIGH                            80      33          NA          47          NA              0.97       (0.45, 2.12)
Code
# Add plot.
plot <- g_forest(
  tbl = result,
  col_symbol_size = NULL
)
plot

Experimental use!

WebR is a tool allowing you to run R code in the web browser. Modify the code below and click run to see the results. Alternatively, copy the code and click here to open WebR in a new tab.

Code
library(tern)
library(dplyr)
library(forcats)
library(nestcolor)

preprocess_adtte <- function(adtte) {
  # Save variable labels before data processing steps.
  adtte_labels <- var_labels(adtte)

  adtte <- adtte %>%
    df_explicit_na() %>%
    dplyr::filter(
      PARAMCD == "OS",
      ARM %in% c("B: Placebo", "A: Drug X"),
      SEX %in% c("M", "F")
    ) %>%
    dplyr::mutate(
      # Reorder levels of ARM to display reference arm before treatment arm.
      ARM = droplevels(forcats::fct_relevel(ARM, "B: Placebo")),
      SEX = droplevels(SEX),
      is_event = CNSR == 0,
      # Convert time to MONTH
      AVAL = day2month(AVAL),
      AVALU = "Months"
    ) %>%
    var_relabel(
      ARM = adtte_labels["ARM"],
      SEX = adtte_labels["SEX"],
      is_event = "Event Flag",
      AVAL = adtte_labels["AVAL"],
      AVALU = adtte_labels["AVALU"]
    )

  adtte
}

anl <- random.cdisc.data::cadtte %>%
  preprocess_adtte()

teal App

  • Preview
  • Try this using shinylive
Code
library(teal.modules.clinical)

## Data reproducible code
data <- teal_data()
data <- within(data, {
  library(dplyr)
  library(forcats)

  ADSL <- random.cdisc.data::cadsl
  ADSL <- ADSL %>%
    filter(ARM %in% c("B: Placebo", "A: Drug X")) %>%
    mutate(ARM = droplevels(fct_relevel(ARM, "B: Placebo"))) %>%
    mutate(ARMCD = droplevels(fct_relevel(ARMCD, "ARM B")))
  ADSL$RACE <- droplevels(ADSL$RACE)

  ADTTE <- random.cdisc.data::cadtte
  adtte_labels <- col_labels(ADTTE)

  ADTTE <- ADTTE %>%
    filter(
      PARAMCD == "OS",
      ARM %in% c("B: Placebo", "A: Drug X"),
      SEX %in% c("M", "F")
    ) %>%
    mutate(
      # Reorder levels of ARM to display reference arm before treatment arm.
      ARM = droplevels(fct_relevel(ARM, "B: Placebo")),
      SEX = droplevels(SEX),
      is_event = CNSR == 0,
      # Convert time to MONTH
      AVAL = day2month(AVAL),
      AVALU = "Months"
    ) %>%
    col_relabel(
      ARM = adtte_labels["ARM"],
      SEX = adtte_labels["SEX"],
      is_event = "Event Flag",
      AVAL = adtte_labels["AVAL"],
      AVALU = adtte_labels["AVALU"]
    )
})
datanames <- c("ADSL", "ADTTE")
datanames(data) <- datanames
Warning: `datanames<-()` was deprecated in teal.data 0.7.0.
ℹ invalid to use `datanames()<-` or `names()<-` on an object of class
  `teal_data`. See ?names.teal_data
Code
join_keys(data) <- default_cdisc_join_keys[datanames]

## Reusable Configuration For Modules
ADSL <- data[["ADSL"]]
ADTTE <- data[["ADTTE"]]

## Setup App
app <- init(
  data = data,
  modules = modules(
    tm_g_forest_tte(
      label = "Forest Survival",
      dataname = "ADTTE",
      arm_var = choices_selected(c("ARM", "ARMCD"), "ARM"),
      subgroup_var = choices_selected(names(ADSL), c("SEX", "BMRKR2")),
      paramcd = choices_selected(value_choices(ADTTE, "PARAMCD", "PARAM"), "OS"),
      strata_var = choices_selected(c("STRATA1", "STRATA2"), "STRATA2"),
      plot_height = c(600, 200, 2000),
      plot_width = c(1500, 200, 5000)
    )
  )
)

shinyApp(app$ui, app$server)

Experimental use!

shinylive allow you to modify to run shiny application entirely in the web browser. Modify the code below and click re-run the app to see the results. The performance is slighly worse and some of the features (e.g. downloading) might not work at all.

#| '!! shinylive warning !!': |
#|   shinylive does not work in self-contained HTML documents.
#|   Please set `embed-resources: false` in your metadata.
#| standalone: true
#| viewerHeight: 800
#| editorHeight: 200
#| components: [viewer, editor]
#| layout: vertical

# -- WEBR HELPERS --
options(webr_pkg_repos = c("r-universe" = "https://insightsengineering.r-universe.dev", getOption("webr_pkg_repos")))

# -- APP CODE --
library(teal.modules.clinical)

## Data reproducible code
data <- teal_data()
data <- within(data, {
  library(dplyr)
  library(forcats)

  ADSL <- random.cdisc.data::cadsl
  ADSL <- ADSL %>%
    filter(ARM %in% c("B: Placebo", "A: Drug X")) %>%
    mutate(ARM = droplevels(fct_relevel(ARM, "B: Placebo"))) %>%
    mutate(ARMCD = droplevels(fct_relevel(ARMCD, "ARM B")))
  ADSL$RACE <- droplevels(ADSL$RACE)

  ADTTE <- random.cdisc.data::cadtte
  adtte_labels <- col_labels(ADTTE)

  ADTTE <- ADTTE %>%
    filter(
      PARAMCD == "OS",
      ARM %in% c("B: Placebo", "A: Drug X"),
      SEX %in% c("M", "F")
    ) %>%
    mutate(
      # Reorder levels of ARM to display reference arm before treatment arm.
      ARM = droplevels(fct_relevel(ARM, "B: Placebo")),
      SEX = droplevels(SEX),
      is_event = CNSR == 0,
      # Convert time to MONTH
      AVAL = day2month(AVAL),
      AVALU = "Months"
    ) %>%
    col_relabel(
      ARM = adtte_labels["ARM"],
      SEX = adtte_labels["SEX"],
      is_event = "Event Flag",
      AVAL = adtte_labels["AVAL"],
      AVALU = adtte_labels["AVALU"]
    )
})
datanames <- c("ADSL", "ADTTE")
datanames(data) <- datanames
join_keys(data) <- default_cdisc_join_keys[datanames]

## Reusable Configuration For Modules
ADSL <- data[["ADSL"]]
ADTTE <- data[["ADTTE"]]

## Setup App
app <- init(
  data = data,
  modules = modules(
    tm_g_forest_tte(
      label = "Forest Survival",
      dataname = "ADTTE",
      arm_var = choices_selected(c("ARM", "ARMCD"), "ARM"),
      subgroup_var = choices_selected(names(ADSL), c("SEX", "BMRKR2")),
      paramcd = choices_selected(value_choices(ADTTE, "PARAMCD", "PARAM"), "OS"),
      strata_var = choices_selected(c("STRATA1", "STRATA2"), "STRATA2"),
      plot_height = c(600, 200, 2000),
      plot_width = c(1500, 200, 5000)
    )
  )
)

shinyApp(app$ui, app$server)

Reproducibility

Timestamp

[1] "2025-06-11 18:02:38 UTC"

Session Info

─ Session info ───────────────────────────────────────────────────────────────
 setting  value
 version  R version 4.5.0 (2025-04-11)
 os       Ubuntu 24.04.2 LTS
 system   x86_64, linux-gnu
 ui       X11
 language (EN)
 collate  en_US.UTF-8
 ctype    en_US.UTF-8
 tz       Etc/UTC
 date     2025-06-11
 pandoc   3.6.4 @ /usr/bin/ (via rmarkdown)
 quarto   1.7.31 @ /usr/local/bin/quarto

─ Packages ───────────────────────────────────────────────────────────────────
 package               * version   date (UTC) lib source
 backports               1.5.0     2024-05-23 [1] RSPM
 brio                    1.1.5     2024-04-24 [1] RSPM
 broom                   1.0.8     2025-03-28 [1] RSPM
 bslib                   0.9.0     2025-01-30 [1] RSPM
 cachem                  1.1.0     2024-05-16 [1] RSPM
 callr                   3.7.6     2024-03-25 [1] RSPM
 checkmate               2.3.2     2024-07-29 [1] RSPM
 chromote                0.5.1     2025-04-24 [1] RSPM
 cli                     3.6.5     2025-04-23 [1] RSPM
 coda                    0.19-4.1  2024-01-31 [1] CRAN (R 4.5.0)
 codetools               0.2-20    2024-03-31 [2] CRAN (R 4.5.0)
 cowplot                 1.1.3     2024-01-22 [1] RSPM
 curl                    6.3.0     2025-06-06 [1] RSPM
 dichromat               2.0-0.1   2022-05-02 [1] CRAN (R 4.5.0)
 digest                  0.6.37    2024-08-19 [1] RSPM
 dplyr                 * 1.1.4     2023-11-17 [1] RSPM
 emmeans                 1.11.1    2025-05-04 [1] RSPM
 estimability            1.5.1     2024-05-12 [1] RSPM
 evaluate                1.0.3     2025-01-10 [1] RSPM
 farver                  2.1.2     2024-05-13 [1] RSPM
 fastmap                 1.2.0     2024-05-15 [1] RSPM
 fontawesome             0.5.3     2024-11-16 [1] RSPM
 forcats               * 1.0.0     2023-01-29 [1] RSPM
 formatR                 1.14      2023-01-17 [1] CRAN (R 4.5.0)
 formatters            * 0.5.11    2025-04-09 [1] RSPM
 geepack                 1.3.12    2024-09-23 [1] RSPM
 generics                0.1.4     2025-05-09 [1] RSPM
 ggplot2                 3.5.2     2025-04-09 [1] RSPM
 glue                    1.8.0     2024-09-30 [1] RSPM
 gtable                  0.3.6     2024-10-25 [1] RSPM
 htmltools               0.5.8.1   2024-04-04 [1] RSPM
 htmlwidgets             1.6.4     2023-12-06 [1] RSPM
 httpuv                  1.6.16    2025-04-16 [1] RSPM
 jquerylib               0.1.4     2021-04-26 [1] RSPM
 jsonlite                2.0.0     2025-03-27 [1] RSPM
 knitr                   1.50      2025-03-16 [1] RSPM
 labeling                0.4.3     2023-08-29 [1] RSPM
 later                   1.4.2     2025-04-08 [1] RSPM
 lattice                 0.22-7    2025-04-02 [2] CRAN (R 4.5.0)
 lifecycle               1.0.4     2023-11-07 [1] RSPM
 logger                  0.4.0     2024-10-22 [1] RSPM
 magrittr              * 2.0.3     2022-03-30 [1] RSPM
 MASS                    7.3-65    2025-02-28 [2] CRAN (R 4.5.0)
 Matrix                  1.7-3     2025-03-11 [1] CRAN (R 4.5.0)
 memoise                 2.0.1     2021-11-26 [1] RSPM
 mime                    0.13      2025-03-17 [1] RSPM
 multcomp                1.4-28    2025-01-29 [1] RSPM
 mvtnorm                 1.3-3     2025-01-10 [1] RSPM
 nestcolor             * 0.1.3     2025-01-21 [1] RSPM
 nlme                    3.1-168   2025-03-31 [2] CRAN (R 4.5.0)
 pillar                  1.10.2    2025-04-05 [1] RSPM
 pkgcache                2.2.4     2025-05-26 [1] RSPM
 pkgconfig               2.0.3     2019-09-22 [1] RSPM
 processx                3.8.6     2025-02-21 [1] RSPM
 promises                1.3.3     2025-05-29 [1] RSPM
 ps                      1.9.1     2025-04-12 [1] RSPM
 purrr                   1.0.4     2025-02-05 [1] RSPM
 R6                      2.6.1     2025-02-15 [1] RSPM
 ragg                    1.4.0     2025-04-10 [1] RSPM
 random.cdisc.data       0.3.16    2024-10-10 [1] RSPM
 rbibutils               2.3       2024-10-04 [1] RSPM
 RColorBrewer            1.1-3     2022-04-03 [1] RSPM
 Rcpp                    1.0.14    2025-01-12 [1] RSPM
 Rdpack                  2.6.4     2025-04-09 [1] RSPM
 rlang                   1.1.6     2025-04-11 [1] RSPM
 rmarkdown               2.29      2024-11-04 [1] RSPM
 rtables               * 0.6.12    2025-04-11 [1] RSPM
 sandwich                3.1-1     2024-09-15 [1] RSPM
 sass                    0.4.10    2025-04-11 [1] RSPM
 scales                  1.4.0     2025-04-24 [1] RSPM
 sessioninfo             1.2.3     2025-02-05 [1] any (@1.2.3)
 shiny                 * 1.10.0    2024-12-14 [1] RSPM
 shinycssloaders         1.1.0     2024-07-30 [1] RSPM
 shinyjs                 2.1.0     2021-12-23 [1] RSPM
 shinyvalidate           0.1.3     2023-10-04 [1] RSPM
 shinyWidgets            0.9.0     2025-02-21 [1] RSPM
 stringi                 1.8.7     2025-03-27 [1] RSPM
 stringr                 1.5.1     2023-11-14 [1] RSPM
 survival                3.8-3     2024-12-17 [2] CRAN (R 4.5.0)
 systemfonts             1.2.3     2025-04-30 [1] RSPM
 teal                  * 0.16.0    2025-02-23 [1] RSPM
 teal.code             * 0.6.1     2025-02-14 [1] RSPM
 teal.data             * 0.7.0     2025-01-28 [1] RSPM
 teal.logger             0.3.2     2025-02-14 [1] RSPM
 teal.modules.clinical * 0.10.0    2025-02-28 [1] RSPM
 teal.reporter           0.4.0     2025-01-24 [1] RSPM
 teal.slice            * 0.6.0     2025-02-03 [1] RSPM
 teal.transform        * 0.6.0     2025-02-12 [1] RSPM
 teal.widgets            0.4.3     2025-01-31 [1] RSPM
 tern                  * 0.9.8.433 2025-06-11 [1] https://i~
 tern.gee                0.1.5     2024-08-23 [1] RSPM
 testthat                3.2.3     2025-01-13 [1] RSPM
 textshaping             1.0.1     2025-05-01 [1] RSPM
 TH.data                 1.1-3     2025-01-17 [1] RSPM
 tibble                  3.3.0     2025-06-08 [1] RSPM
 tidyr                   1.3.1     2024-01-24 [1] RSPM
 tidyselect              1.2.1     2024-03-11 [1] RSPM
 vctrs                   0.6.5     2023-12-01 [1] RSPM
 webshot                 0.5.5     2023-06-26 [1] CRAN (R 4.5.0)
 webshot2                0.1.2     2025-04-23 [1] RSPM
 websocket               1.4.4     2025-04-10 [1] RSPM
 withr                   3.0.2     2024-10-28 [1] RSPM
 xfun                    0.52      2025-04-02 [1] RSPM
 xtable                  1.8-4     2019-04-21 [1] RSPM
 yaml                    2.3.10    2024-07-26 [1] RSPM
 zoo                     1.8-14    2025-04-10 [1] RSPM

 [1] /usr/local/lib/R/site-library
 [2] /usr/local/lib/R/library
 [3] /github/home/R/x86_64-pc-linux-gnu-library/4.5
 * ── Packages attached to the search path.

──────────────────────────────────────────────────────────────────────────────

.lock file

Download the .lock file and use renv::restore() on it to recreate environment used to generate this website.

Download

FSTG01
KMG01
Source Code
---
title: FSTG02
subtitle: Subgroup Analysis of Survival Duration
---

------------------------------------------------------------------------

{{< include ../../_utils/envir_hook.qmd >}}

```{r setup, echo = FALSE, warning = FALSE, message = FALSE}
library(tern)
library(dplyr)
library(forcats)
library(nestcolor)

preprocess_adtte <- function(adtte) {
  # Save variable labels before data processing steps.
  adtte_labels <- var_labels(adtte)

  adtte <- adtte %>%
    df_explicit_na() %>%
    dplyr::filter(
      PARAMCD == "OS",
      ARM %in% c("B: Placebo", "A: Drug X"),
      SEX %in% c("M", "F")
    ) %>%
    dplyr::mutate(
      # Reorder levels of ARM to display reference arm before treatment arm.
      ARM = droplevels(forcats::fct_relevel(ARM, "B: Placebo")),
      SEX = droplevels(SEX),
      is_event = CNSR == 0,
      # Convert time to MONTH
      AVAL = day2month(AVAL),
      AVALU = "Months"
    ) %>%
    var_relabel(
      ARM = adtte_labels["ARM"],
      SEX = adtte_labels["SEX"],
      is_event = "Event Flag",
      AVAL = adtte_labels["AVAL"],
      AVALU = adtte_labels["AVALU"]
    )

  adtte
}

anl <- random.cdisc.data::cadtte %>%
  preprocess_adtte()
```

```{r include = FALSE}
webr_code_labels <- c("setup")
```

{{< include ../../_utils/webr_no_include.qmd >}}

## Output

::::::: panel-tabset
## Standard Plot

::: {.panel-tabset .nav-justified group="webr"}
## {{< fa regular file-lines sm fw >}} Preview

```{r plot1, test = list(plot_v1 = "plot"), fig.width = 15, fig.height = 4}
anl1 <- anl

df <- extract_survival_subgroups(
  variables = list(tte = "AVAL", is_event = "is_event", arm = "ARM", subgroups = c("SEX", "BMRKR2")),
  data = anl1
)

result <- basic_table() %>%
  tabulate_survival_subgroups(
    df = df,
    vars = c("n_tot", "n", "median", "hr", "ci"),
    time_unit = anl1$AVALU[1]
  )
result

# Add plot.
plot <- g_forest(tbl = result)
plot
```

```{r include = FALSE}
webr_code_labels <- c("plot1")
```

{{< include ../../_utils/webr.qmd >}}
:::

## Plot Specifying Class Variables and <br/> Options for the Treatment Variable

::: {.panel-tabset .nav-justified group="webr"}
## {{< fa regular file-lines sm fw >}} Preview

```{r plot2, test = list(plot_v2 = "plot"), fig.width = 15, fig.height = 4}
anl2 <- anl %>%
  mutate(
    # Recode levels of arm.
    ARM = forcats::fct_recode(
      ARM,
      "Placebo" = "B: Placebo",
      "Drug X" = "A: Drug X"
    ),
    # Reorder levels of `SEX`.
    SEX = forcats::fct_relevel(SEX, "M", "F"),
    # Reorder levels of `STRATA1`` by frequency.
    STRATA1 = forcats::fct_infreq(STRATA1)
  )

df <- extract_survival_subgroups(
  variables = list(tte = "AVAL", is_event = "is_event", arm = "ARM", subgroups = c("SEX", "STRATA1")),
  data = anl2
)

result <- basic_table() %>%
  tabulate_survival_subgroups(
    df = df,
    vars = c("n_tot", "n", "median", "hr", "ci"),
    time_unit = anl2$AVALU[1]
  )
result

plot <- g_forest(tbl = result)
plot
```

```{r include = FALSE}
webr_code_labels <- c("plot2")
```

{{< include ../../_utils/webr.qmd >}}
:::

## Plot Selecting Columns and <br/> Changing the Alpha Level

::: {.panel-tabset .nav-justified group="webr"}
## {{< fa regular file-lines sm fw >}} Preview

```{r plot3, test = list(plot_v3 = "plot"), fig.width = 8, fig.height = 4}
anl3 <- anl

df <- extract_survival_subgroups(
  variables = list(tte = "AVAL", is_event = "is_event", arm = "ARM", subgroups = c("SEX", "BMRKR2")),
  control = control_coxph(conf_level = 0.9),
  data = anl3
)

result <- basic_table() %>%
  tabulate_survival_subgroups(
    df = df,
    vars = c("n_tot", "hr", "ci")
  )
result

# Add plot.
plot <- g_forest(tbl = result)
plot
```

```{r include = FALSE}
webr_code_labels <- c("plot3")
```

{{< include ../../_utils/webr.qmd >}}
:::

## Plot with Fixed <br/> Symbol Size

::: {.panel-tabset .nav-justified group="webr"}
## {{< fa regular file-lines sm fw >}} Preview

```{r plot4, test = list(plot_v4 = "plot"), fig.width = 15, fig.height = 4}
anl4 <- anl

df <- extract_survival_subgroups(
  variables = list(tte = "AVAL", is_event = "is_event", arm = "ARM", subgroups = c("SEX", "BMRKR2")),
  data = anl4
)

result <- basic_table() %>%
  tabulate_survival_subgroups(
    df = df,
    vars = c("n_tot", "n", "median", "hr", "ci"),
    time_unit = anl4$AVALU[1]
  )
result

# Add plot.
plot <- g_forest(
  tbl = result,
  col_symbol_size = NULL
)
plot
```

```{r test parameters, test = list(width = "width", height = "height", plot_v3.width = "plot_v3.width"), echo = FALSE}
width <- 15
height <- 4
plot_v3.width <- 8 # nolint: object_name.
```

```{r include = FALSE}
webr_code_labels <- c("plot4")
```

{{< include ../../_utils/webr.qmd >}}
:::

## Data Setup

```{r setup}
#| code-fold: show
```
:::::::

{{< include ../../_utils/save_results.qmd >}}

## `teal` App

::: {.panel-tabset .nav-justified}
## {{< fa regular file-lines fa-sm fa-fw >}} Preview

```{r teal, opts.label = c("skip_if_testing", "app")}
library(teal.modules.clinical)

## Data reproducible code
data <- teal_data()
data <- within(data, {
  library(dplyr)
  library(forcats)

  ADSL <- random.cdisc.data::cadsl
  ADSL <- ADSL %>%
    filter(ARM %in% c("B: Placebo", "A: Drug X")) %>%
    mutate(ARM = droplevels(fct_relevel(ARM, "B: Placebo"))) %>%
    mutate(ARMCD = droplevels(fct_relevel(ARMCD, "ARM B")))
  ADSL$RACE <- droplevels(ADSL$RACE)

  ADTTE <- random.cdisc.data::cadtte
  adtte_labels <- col_labels(ADTTE)

  ADTTE <- ADTTE %>%
    filter(
      PARAMCD == "OS",
      ARM %in% c("B: Placebo", "A: Drug X"),
      SEX %in% c("M", "F")
    ) %>%
    mutate(
      # Reorder levels of ARM to display reference arm before treatment arm.
      ARM = droplevels(fct_relevel(ARM, "B: Placebo")),
      SEX = droplevels(SEX),
      is_event = CNSR == 0,
      # Convert time to MONTH
      AVAL = day2month(AVAL),
      AVALU = "Months"
    ) %>%
    col_relabel(
      ARM = adtte_labels["ARM"],
      SEX = adtte_labels["SEX"],
      is_event = "Event Flag",
      AVAL = adtte_labels["AVAL"],
      AVALU = adtte_labels["AVALU"]
    )
})
datanames <- c("ADSL", "ADTTE")
datanames(data) <- datanames
join_keys(data) <- default_cdisc_join_keys[datanames]

## Reusable Configuration For Modules
ADSL <- data[["ADSL"]]
ADTTE <- data[["ADTTE"]]

## Setup App
app <- init(
  data = data,
  modules = modules(
    tm_g_forest_tte(
      label = "Forest Survival",
      dataname = "ADTTE",
      arm_var = choices_selected(c("ARM", "ARMCD"), "ARM"),
      subgroup_var = choices_selected(names(ADSL), c("SEX", "BMRKR2")),
      paramcd = choices_selected(value_choices(ADTTE, "PARAMCD", "PARAM"), "OS"),
      strata_var = choices_selected(c("STRATA1", "STRATA2"), "STRATA2"),
      plot_height = c(600, 200, 2000),
      plot_width = c(1500, 200, 5000)
    )
  )
)

shinyApp(app$ui, app$server)
```

{{< include ../../_utils/shinylive.qmd >}}
:::

{{< include ../../repro.qmd >}}

Made with ❤️ by the NEST Team

  • Edit this page
  • Report an issue
Cookie Preferences