TLG Catalog - Stable
  • Stable
    • Dev
  1. Tables
  2. Adverse Events
  3. AET01
  • Introduction

  • Tables
    • ADA
      • ADAT01
      • ADAT02
      • ADAT03
      • ADAT04A
      • ADAT04B
    • Adverse Events
      • AET01
      • AET01_AESI
      • AET02
      • AET02_SMQ
      • AET03
      • AET04
      • AET04_PI
      • AET05
      • AET05_ALL
      • AET06
      • AET06_SMQ
      • AET07
      • AET09
      • AET09_SMQ
      • AET10
    • Concomitant Medications
      • CMT01
      • CMT01A
      • CMT01B
      • CMT02_PT
    • Deaths
      • DTHT01
    • Demography
      • DMT01
    • Disclosures
      • DISCLOSUREST01
      • EUDRAT01
      • EUDRAT02
    • Disposition
      • DST01
      • PDT01
      • PDT02
    • ECG
      • EGT01
      • EGT02
      • EGT03
      • EGT04
      • EGT05_QTCAT
    • Efficacy
      • AOVT01
      • AOVT02
      • AOVT03
      • CFBT01
      • CMHT01
      • COXT01
      • COXT02
      • DORT01
      • LGRT02
      • MMRMT01
      • ONCT05
      • RATET01
      • RBMIT01
      • RSPT01
      • TTET01
    • Exposure
      • EXT01
    • Lab Results
      • LBT01
      • LBT02
      • LBT03
      • LBT04
      • LBT05
      • LBT06
      • LBT07
      • LBT08
      • LBT09
      • LBT10
      • LBT10_BL
      • LBT11
      • LBT11_BL
      • LBT12
      • LBT12_BL
      • LBT13
      • LBT14
      • LBT15
    • Medical History
      • MHT01
    • Pharmacokinetic
      • PKCT01
      • PKPT02
      • PKPT03
      • PKPT04
      • PKPT05
      • PKPT06
      • PKPT07
      • PKPT08
      • PKPT11
    • Risk Management Plan
      • RMPT01
      • RMPT03
      • RMPT04
      • RMPT05
      • RMPT06
    • Safety
      • ENTXX
    • Vital Signs
      • VST01
      • VST02
  • Listings
    • ADA
      • ADAL02
    • Adverse Events
      • AEL01
      • AEL01_NOLLT
      • AEL02
      • AEL02_ED
      • AEL03
      • AEL04
    • Concomitant Medications
      • CML01
      • CML02A_GL
      • CML02B_GL
    • Development Safety Update Report
      • DSUR4
    • Disposition
      • DSL01
      • DSL02
    • ECG
      • EGL01
    • Efficacy
      • ONCL01
    • Exposure
      • EXL01
    • Lab Results
      • LBL01
      • LBL01_RLS
      • LBL02A
      • LBL02A_RLS
      • LBL02B
    • Medical History
      • MHL01
    • Pharmacokinetic
      • ADAL01
      • PKCL01
      • PKCL02
      • PKPL01
      • PKPL02
      • PKPL04
    • Vital Signs
      • VSL01
  • Graphs
    • Efficacy
      • FSTG01
      • FSTG02
      • KMG01
      • MMRMG01
      • MMRMG02
    • Other
      • BRG01
      • BWG01
      • CIG01
      • IPPG01
      • LTG01
      • MNG01
    • Pharmacokinetic
      • PKCG01
      • PKCG02
      • PKCG03
      • PKPG01
      • PKPG02
      • PKPG03
      • PKPG04
      • PKPG06

  • Appendix
    • Reproducibility

  • Index

On this page

  • Output
  • teal App
  • Reproducibility
    • Timestamp
    • Session Info
    • .lock file
  • Edit this page
  • Report an issue
  1. Tables
  2. Adverse Events
  3. AET01

AET01

Overview of Deaths and Adverse Events


Output

  • Standard Table
  • Table with Medical
    Concepts Section
  • Table with
    Modified Rows
  • Table with Rows Counting
    Events & Additional Sections
  • Data Setup
  • Preview
  • Try this using WebR
Code
aesi_vars <- c("FATAL", "SER", "SERWD", "SERDSM", "RELSER", "WD", "DSM", "REL", "RELWD", "RELDSM", "SEV")

# Layout for variables from adsl dataset.
lyt_adsl <- basic_table(show_colcounts = TRUE) %>%
  split_cols_by("ACTARM") %>%
  count_patients_with_event(
    "USUBJID",
    filters = c("DTHFL" = "Y"),
    denom = "N_col",
    .labels = c(count_fraction = "Total number of deaths")
  ) %>%
  count_patients_with_event(
    "USUBJID",
    filters = c("DCSREAS" = "ADVERSE EVENT"),
    denom = "N_col",
    .labels = c(count_fraction = "Total number of patients withdrawn from study due to an AE"),
    table_names = "tot_wd"
  )

result_adsl <- build_table(lyt_adsl, df = adsl, alt_counts_df = adsl)

# Layout for variables from adae dataset.
lyt_adae <- basic_table(show_colcounts = TRUE) %>%
  split_cols_by("ACTARM") %>%
  analyze_num_patients(
    vars = "USUBJID",
    .stats = c("unique", "nonunique"),
    .labels = c(
      unique = "Total number of patients with at least one AE",
      nonunique = "Total number of AEs"
    ),
    .formats = list(unique = format_count_fraction_fixed_dp, nonunique = "xx"),
    show_labels = "hidden"
  ) %>%
  count_patients_with_flags(
    "USUBJID",
    flag_variables = aesi_vars,
    denom = "N_col",
    var_labels = "Total number of patients with at least one",
    show_labels = "visible"
  )

result_adae <- build_table(lyt_adae, df = adae, alt_counts_df = adsl)

# Combine tables.
col_info(result_adsl) <- col_info(result_adae)
result <- rbind(
  result_adae[1:2, ],
  result_adsl,
  result_adae[3:nrow(result_adae), ]
)

result
                                                              A: Drug X    B: Placebo   C: Combination
                                                               (N=134)      (N=134)        (N=132)    
——————————————————————————————————————————————————————————————————————————————————————————————————————
Total number of patients with at least one AE                100 (74.6%)   98 (73.1%)    103 (78.0%)  
Total number of AEs                                              502          480            604      
Total number of deaths                                       25 (18.7%)    23 (17.2%)     22 (16.7%)  
Total number of patients withdrawn from study due to an AE    3 (2.2%)      6 (4.5%)       5 (3.8%)   
Total number of patients with at least one                                                            
  AE with fatal outcome                                       5 (3.7%)      5 (3.7%)       6 (4.5%)   
  Serious AE                                                 85 (63.4%)    80 (59.7%)     87 (65.9%)  
  Serious AE leading to withdrawal from treatment             6 (4.5%)     12 (9.0%)       9 (6.8%)   
  Serious AE leading to dose modification/interruption       36 (26.9%)    40 (29.9%)     47 (35.6%)  
  Related Serious AE                                         64 (47.8%)    52 (38.8%)     64 (48.5%)  
  AE leading to withdrawal from treatment                    20 (14.9%)    24 (17.9%)     26 (19.7%)  
  AE leading to dose modification/interruption               63 (47.0%)    70 (52.2%)     77 (58.3%)  
  Related AE                                                 86 (64.2%)    85 (63.4%)     92 (69.7%)  
  Related AE leading to withdrawal from treatment             10 (7.5%)     9 (6.7%)      12 (9.1%)   
  Related AE leading to dose modification/interruption       44 (32.8%)    44 (32.8%)     51 (38.6%)  
  Severe AE (at greatest intensity)                          77 (57.5%)    70 (52.2%)     79 (59.8%)  
Experimental use!

WebR is a tool allowing you to run R code in the web browser. Modify the code below and click run to see the results. Alternatively, copy the code and click here to open WebR in a new tab.

  • Preview
  • Try this using WebR
Code
aesi_vars <- c("FATAL", "SER", "SERWD", "SERDSM", "RELSER", "WD", "DSM", "REL", "RELWD", "RELDSM", "CTC35")
basket_vars <- c("SMQ01", "SMQ02", "CQ01")

# Layout for variables from adsl dataset.
lyt_adsl <- basic_table(show_colcounts = TRUE) %>%
  split_cols_by("ACTARM") %>%
  count_patients_with_event(
    "USUBJID",
    filters = c("DTHFL" = "Y"),
    denom = "N_col",
    .labels = c(count_fraction = "Total number of deaths")
  ) %>%
  count_patients_with_event(
    "USUBJID",
    filters = c("DCSREAS" = "ADVERSE EVENT"),
    denom = "N_col",
    .labels = c(count_fraction = "Total number of patients withdrawn from study due to an AE"),
    table_names = "tot_wd"
  )

result_adsl <- build_table(lyt_adsl, df = adsl, alt_counts_df = adsl)

# Layout for variables from adae dataset.
lyt_adae <- basic_table(show_colcounts = TRUE) %>%
  split_cols_by("ACTARM") %>%
  analyze_num_patients(
    vars = "USUBJID",
    .stats = c("unique", "nonunique"),
    .labels = c(
      unique = "Total number of patients with at least one AE",
      nonunique = "Total number of AEs"
    ),
    .formats = list(unique = format_count_fraction_fixed_dp, nonunique = "xx"),
    show_labels = "hidden"
  ) %>%
  count_patients_with_flags(
    "USUBJID",
    flag_variables = aesi_vars,
    denom = "N_col",
    var_labels = "Total number of patients with at least one",
    show_labels = "visible"
  ) %>%
  count_patients_with_flags(
    "USUBJID",
    flag_variables = basket_vars,
    table_names = "table_aesi",
    denom = "N_col",
    var_labels = "Total number of patients with at least one",
    show_labels = "visible"
  )

result_adae <- build_table(lyt_adae, df = adae, alt_counts_df = adsl)

# Combine tables.
col_info(result_adsl) <- col_info(result_adae)
result <- rbind(
  result_adae[1:2, ],
  result_adsl,
  result_adae[3:nrow(result_adae), ]
)

result
                                                              A: Drug X    B: Placebo   C: Combination
                                                               (N=134)      (N=134)        (N=132)    
——————————————————————————————————————————————————————————————————————————————————————————————————————
Total number of patients with at least one AE                100 (74.6%)   98 (73.1%)    103 (78.0%)  
Total number of AEs                                              502          480            604      
Total number of deaths                                       25 (18.7%)    23 (17.2%)     22 (16.7%)  
Total number of patients withdrawn from study due to an AE    3 (2.2%)      6 (4.5%)       5 (3.8%)   
Total number of patients with at least one                                                            
  AE with fatal outcome                                       5 (3.7%)      5 (3.7%)       6 (4.5%)   
  Serious AE                                                 85 (63.4%)    80 (59.7%)     87 (65.9%)  
  Serious AE leading to withdrawal from treatment             6 (4.5%)     12 (9.0%)       9 (6.8%)   
  Serious AE leading to dose modification/interruption       36 (26.9%)    40 (29.9%)     47 (35.6%)  
  Related Serious AE                                         64 (47.8%)    52 (38.8%)     64 (48.5%)  
  AE leading to withdrawal from treatment                    20 (14.9%)    24 (17.9%)     26 (19.7%)  
  AE leading to dose modification/interruption               63 (47.0%)    70 (52.2%)     77 (58.3%)  
  Related AE                                                 86 (64.2%)    85 (63.4%)     92 (69.7%)  
  Related AE leading to withdrawal from treatment             10 (7.5%)     9 (6.7%)      12 (9.1%)   
  Related AE leading to dose modification/interruption       44 (32.8%)    44 (32.8%)     51 (38.6%)  
  Grade 3-5 AE                                               90 (67.2%)    83 (61.9%)     93 (70.5%)  
Total number of patients with at least one                                                            
  C.1.1.1.3/B.2.2.3.1 AESI (BROAD)                           58 (43.3%)    60 (44.8%)     66 (50.0%)  
  SMQ 02 Reference Name                                           0            0              0       
  D.2.1.5.3/A.1.1.1.1 AESI                                   62 (46.3%)    61 (45.5%)     76 (57.6%)  
Experimental use!

WebR is a tool allowing you to run R code in the web browser. Modify the code below and click run to see the results. Alternatively, copy the code and click here to open WebR in a new tab.

  • Preview
  • Try this using WebR
Code
aesi_vars <- c("FATAL", "SER", "WD", "REL", "CTC35", "CTC45")
# Layout for variables from adsl dataset.
lyt_adsl <- basic_table(show_colcounts = TRUE) %>%
  split_cols_by("ACTARM") %>%
  count_patients_with_event(
    "USUBJID",
    filters = c("DTHFL" = "Y"),
    denom = "N_col",
    .labels = c(count_fraction = "Total number of deaths")
  ) %>%
  count_patients_with_event(
    "USUBJID",
    filters = c("DCSREAS" = "ADVERSE EVENT"),
    denom = "N_col",
    .labels = c(count_fraction = "Total number of patients withdrawn from study due to an AE"),
    table_names = "tot_wd"
  ) %>%
  count_patients_with_event(
    "USUBJID",
    filters = c("DCSREAS" = "WITHDRAWAL BY SUBJECT"),
    denom = "N_col",
    .labels = c(count_fraction = "Total number of patients withdrawn informed consent"),
    table_names = "tot_dscsreas_wd"
  )
result_adsl <- build_table(lyt_adsl, df = adsl, alt_counts_df = adsl)

# Layout for variables from adae dataset.
lyt_adae <- basic_table(show_colcounts = TRUE) %>%
  split_cols_by("ACTARM") %>%
  analyze_num_patients(
    vars = "USUBJID",
    .stats = c("unique", "nonunique"),
    .labels = c(
      unique = "Total number of patients with at least one AE",
      nonunique = "Total number of AEs"
    ),
    .formats = list(unique = format_count_fraction_fixed_dp, nonunique = "xx"),
    show_labels = "hidden"
  ) %>%
  count_patients_with_flags(
    "USUBJID",
    flag_variables = aesi_vars,
    denom = "N_col",
    var_labels = "Total number of patients with at least one",
    show_labels = "visible"
  )
result_adae <- build_table(lyt_adae, df = adae, alt_counts_df = adsl)

# Combine tables.
col_info(result_adsl) <- col_info(result_adae)
result <- rbind(
  result_adae[1:2, ],
  result_adsl,
  result_adae[3:nrow(result_adae), ]
)

result
                                                              A: Drug X    B: Placebo   C: Combination
                                                               (N=134)      (N=134)        (N=132)    
——————————————————————————————————————————————————————————————————————————————————————————————————————
Total number of patients with at least one AE                100 (74.6%)   98 (73.1%)    103 (78.0%)  
Total number of AEs                                              502          480            604      
Total number of deaths                                       25 (18.7%)    23 (17.2%)     22 (16.7%)  
Total number of patients withdrawn from study due to an AE    3 (2.2%)      6 (4.5%)       5 (3.8%)   
Total number of patients withdrawn informed consent           1 (0.7%)      1 (0.7%)       1 (0.8%)   
Total number of patients with at least one                                                            
  AE with fatal outcome                                       5 (3.7%)      5 (3.7%)       6 (4.5%)   
  Serious AE                                                 85 (63.4%)    80 (59.7%)     87 (65.9%)  
  AE leading to withdrawal from treatment                    20 (14.9%)    24 (17.9%)     26 (19.7%)  
  Related AE                                                 86 (64.2%)    85 (63.4%)     92 (69.7%)  
  Grade 3-5 AE                                               90 (67.2%)    83 (61.9%)     93 (70.5%)  
  Grade 4/5 AE                                               77 (57.5%)    70 (52.2%)     79 (59.8%)  
Experimental use!

WebR is a tool allowing you to run R code in the web browser. Modify the code below and click run to see the results. Alternatively, copy the code and click here to open WebR in a new tab.

  • Preview
  • Try this using WebR
Code
count_subj_vars <- c("FATAL", "SER", "WD", "DSM", "REL", "CTC35")
count_term_vars <- c("SER", "DSM", "REL", "CTC35", "CTC45")
count_ae_vars <- c("SER", "DSM", "REL", "CTC35", "CTC45")

# Layout for variables from adsl dataset.
lyt_adsl <- basic_table(show_colcounts = TRUE) %>%
  split_cols_by("ACTARM") %>%
  count_patients_with_event(
    "USUBJID",
    filters = c("DTHFL" = "Y"),
    denom = "N_col",
    .labels = c(count_fraction = "Total number of deaths")
  ) %>%
  count_patients_with_event(
    "USUBJID",
    filters = c("DCSREAS" = "ADVERSE EVENT"),
    denom = "N_col",
    .labels = c(count_fraction = "Total number of patients withdrawn from study due to an AE"),
    table_names = "tot_wd"
  )

result_adsl <- build_table(lyt_adsl, df = adsl, alt_counts_df = adsl)

# Layout for variables from adae dataset.
lyt_adae <- basic_table(show_colcounts = TRUE) %>%
  split_cols_by("ACTARM") %>%
  analyze_num_patients(
    vars = "USUBJID",
    .stats = c("unique", "nonunique"),
    .labels = c(
      unique = "Total number of patients with at least one AE",
      nonunique = "Total number of AEs"
    ),
    .formats = list(unique = format_count_fraction_fixed_dp, nonunique = "xx"),
    show_labels = "hidden"
  ) %>%
  count_patients_with_flags(
    "USUBJID",
    flag_variables = count_subj_vars,
    denom = "N_col",
    var_labels = "Total number of patients with at least one",
    show_labels = "visible"
  ) %>%
  count_patients_with_flags(
    "AEDECOD",
    flag_variables = count_term_vars,
    .stats = "count",
    .formats = c(count = "xx"),
    table_names = "table_term",
    var_labels = "Total number of unique preferred terms which are",
    show_labels = "visible"
  ) %>%
  count_patients_with_flags(
    "USUBJID_AESEQ",
    flag_variables = count_ae_vars,
    .stats = "count",
    .formats = c(count = "xx"),
    table_names = "table_ae",
    var_labels = "Total number of adverse events which are",
    show_labels = "visible"
  )

result_adae <- build_table(lyt_adae, df = adae, alt_counts_df = adsl)

# Combine tables.
col_info(result_adsl) <- col_info(result_adae)
result <- rbind(
  result_adae[1:2, ],
  result_adsl,
  result_adae[3:nrow(result_adae), ]
)

result
                                                              A: Drug X    B: Placebo   C: Combination
                                                               (N=134)      (N=134)        (N=132)    
——————————————————————————————————————————————————————————————————————————————————————————————————————
Total number of patients with at least one AE                100 (74.6%)   98 (73.1%)    103 (78.0%)  
Total number of AEs                                              502          480            604      
Total number of deaths                                       25 (18.7%)    23 (17.2%)     22 (16.7%)  
Total number of patients withdrawn from study due to an AE    3 (2.2%)      6 (4.5%)       5 (3.8%)   
Total number of patients with at least one                                                            
  AE with fatal outcome                                       5 (3.7%)      5 (3.7%)       6 (4.5%)   
  Serious AE                                                 85 (63.4%)    80 (59.7%)     87 (65.9%)  
  AE leading to withdrawal from treatment                    20 (14.9%)    24 (17.9%)     26 (19.7%)  
  AE leading to dose modification/interruption               63 (47.0%)    70 (52.2%)     77 (58.3%)  
  Related AE                                                 86 (64.2%)    85 (63.4%)     92 (69.7%)  
  Grade 3-5 AE                                               90 (67.2%)    83 (61.9%)     93 (70.5%)  
Total number of unique preferred terms which are                                                      
  Serious AE                                                      4            4              4       
  AE leading to dose modification/interruption                   10            10             10      
  Related AE                                                      5            5              5       
  Grade 3-5 AE                                                    5            5              5       
  Grade 4/5 AE                                                    3            3              3       
Total number of adverse events which are                                                              
  Serious AE                                                     204          194            245      
  AE leading to dose modification/interruption                   123          135            158      
  Related AE                                                     231          231            290      
  Grade 3-5 AE                                                   249          229            277      
  Grade 4/5 AE                                                   143          134            168      
Experimental use!

WebR is a tool allowing you to run R code in the web browser. Modify the code below and click run to see the results. Alternatively, copy the code and click here to open WebR in a new tab.

To illustrate, additional variables such as flags (TRUE/FALSE) for select AEs of interest and select AE baskets are added to the adae dataset.

Code
library(tern)
library(dplyr)

adsl <- random.cdisc.data::cadsl
adae <- random.cdisc.data::cadae

# Ensure character variables are converted to factors and empty strings and NAs are explicit missing levels.
adsl <- df_explicit_na(adsl)
adae <- df_explicit_na(
  adae,
  omit_columns = c("SMQ01NAM", "SMQ01SC", "SMQ02NAM", "SMQ02SC", "CQ01NAM", "STUDYID", "USUBJID")
)

set.seed(99)

adae <- adae %>%
  mutate(
    AEDECOD = with_label(as.character(AEDECOD), "Dictionary-Derived Term"),
    AESDTH = with_label(
      sample(c("N", "Y"), size = nrow(adae), replace = TRUE, prob = c(0.99, 0.01)),
      "Results in Death"
    ),
    AEACN = with_label(
      sample(
        c("DOSE NOT CHANGED", "DOSE INCREASED", "DRUG INTERRUPTED", "DRUG WITHDRAWN"),
        size = nrow(adae),
        replace = TRUE, prob = c(0.68, 0.02, 0.25, 0.05)
      ),
      "Action Taken with Study Treatment"
    ),
    FATAL = with_label(AESDTH == "Y", "AE with fatal outcome"),
    SEV = with_label(AESEV == "SEVERE", "Severe AE (at greatest intensity)"),
    SER = with_label(AESER == "Y", "Serious AE"),
    SERWD = with_label(AESER == "Y" & AEACN == "DRUG WITHDRAWN", "Serious AE leading to withdrawal from treatment"),
    SERDSM = with_label(
      AESER == "Y" & AEACN %in% c("DRUG INTERRUPTED", "DOSE INCREASED", "DOSE REDUCED"),
      "Serious AE leading to dose modification/interruption"
    ),
    RELSER = with_label(AESER == "Y" & AEREL == "Y", "Related Serious AE"),
    WD = with_label(AEACN == "DRUG WITHDRAWN", "AE leading to withdrawal from treatment"),
    DSM = with_label(
      AEACN %in% c("DRUG INTERRUPTED", "DOSE INCREASED", "DOSE REDUCED"), "AE leading to dose modification/interruption"
    ),
    REL = with_label(AEREL == "Y", "Related AE"),
    RELWD = with_label(AEREL == "Y" & AEACN == "DRUG WITHDRAWN", "Related AE leading to withdrawal from treatment"),
    RELDSM = with_label(
      AEREL == "Y" & AEACN %in% c("DRUG INTERRUPTED", "DOSE INCREASED", "DOSE REDUCED"),
      "Related AE leading to dose modification/interruption"
    ),
    CTC35 = with_label(AETOXGR %in% c("3", "4", "5"), "Grade 3-5 AE"),
    CTC45 = with_label(AETOXGR %in% c("4", "5"), "Grade 4/5 AE"),
    SMQ01 = with_label(SMQ01NAM != "", aesi_label(adae$SMQ01NAM, adae$SMQ01SC)),
    SMQ02 = with_label(SMQ02NAM != "", aesi_label(adae$SMQ02NAM, adae$SMQ02SC)),
    CQ01 = with_label(CQ01NAM != "", aesi_label(adae$CQ01NAM)),
    USUBJID_AESEQ = paste(USUBJID, AESEQ, sep = "@@") # Create unique ID per AE in dataset.
  ) %>%
  filter(ANL01FL == "Y")

teal App

  • Preview
  • Try this using shinylive
Code
library(teal.modules.clinical)

## Data reproducible code
data <- teal_data()
data <- within(data, {
  library(dplyr)

  ADSL <- random.cdisc.data::cadsl
  ADAE <- random.cdisc.data::cadae

  add_event_flags <- function(dat) {
    dat %>%
      mutate(
        TMPFL_SER = AESER == "Y",
        TMPFL_REL = AEREL == "Y",
        TMPFL_GR5 = AETOXGR == "5",
        TMP_SMQ01 = !is.na(SMQ01NAM),
        TMP_SMQ02 = !is.na(SMQ02NAM),
        TMP_CQ01 = !is.na(CQ01NAM)
      ) %>%
      col_relabel(
        TMPFL_SER = "Serious AE",
        TMPFL_REL = "Related AE",
        TMPFL_GR5 = "Grade 5 AE",
        TMP_SMQ01 = aesi_label(dat[["SMQ01NAM"]], dat[["SMQ01SC"]]),
        TMP_SMQ02 = aesi_label(dat[["SMQ02NAM"]], dat[["SMQ02SC"]]),
        TMP_CQ01 = aesi_label(dat[["CQ01NAM"]])
      )
  }

  # Generating user-defined event flags.
  ADAE <- ADAE %>% add_event_flags()
})
datanames <- c("ADSL", "ADAE")
datanames(data) <- datanames
Warning: `datanames<-()` was deprecated in teal.data 0.7.0.
ℹ invalid to use `datanames()<-` or `names()<-` on an object of class
  `teal_data`. See ?names.teal_data
Code
join_keys(data) <- default_cdisc_join_keys[datanames]

## Reusable Configuration For Modules
ADSL <- data[["ADSL"]]
ADAE <- data[["ADAE"]]
ae_anl_vars <- names(ADAE)[startsWith(names(ADAE), "TMPFL_")]
aesi_vars <- names(ADAE)[startsWith(names(ADAE), "TMP_")]

## Setup App
app <- init(
  data = data,
  modules = modules(
    tm_t_events_summary(
      label = "Adverse Events Summary",
      dataname = "ADAE",
      arm_var = choices_selected(
        choices = variable_choices("ADSL", c("ARM", "ARMCD")),
        selected = "ARM"
      ),
      flag_var_anl = choices_selected(
        choices = variable_choices("ADAE", ae_anl_vars),
        selected = ae_anl_vars[1],
        keep_order = TRUE,
        fixed = FALSE
      ),
      flag_var_aesi = choices_selected(
        choices = variable_choices("ADAE", aesi_vars),
        selected = aesi_vars[1],
        keep_order = TRUE,
        fixed = FALSE
      ),
      add_total = TRUE
    )
  )
)
Warning in rlang::hash(list(data = data, modules = modules)):
'package:teal.modules.clinical' may not be available when loading
Code
shinyApp(app$ui, app$server)

Experimental use!

shinylive allow you to modify to run shiny application entirely in the web browser. Modify the code below and click re-run the app to see the results. The performance is slighly worse and some of the features (e.g. downloading) might not work at all.

#| '!! shinylive warning !!': |
#|   shinylive does not work in self-contained HTML documents.
#|   Please set `embed-resources: false` in your metadata.
#| standalone: true
#| viewerHeight: 800
#| editorHeight: 200
#| components: [viewer, editor]
#| layout: vertical

# -- WEBR HELPERS --
options(webr_pkg_repos = c("r-universe" = "https://insightsengineering.r-universe.dev", getOption("webr_pkg_repos")))

# -- APP CODE --
library(teal.modules.clinical)

## Data reproducible code
data <- teal_data()
data <- within(data, {
  library(dplyr)

  ADSL <- random.cdisc.data::cadsl
  ADAE <- random.cdisc.data::cadae

  add_event_flags <- function(dat) {
    dat %>%
      mutate(
        TMPFL_SER = AESER == "Y",
        TMPFL_REL = AEREL == "Y",
        TMPFL_GR5 = AETOXGR == "5",
        TMP_SMQ01 = !is.na(SMQ01NAM),
        TMP_SMQ02 = !is.na(SMQ02NAM),
        TMP_CQ01 = !is.na(CQ01NAM)
      ) %>%
      col_relabel(
        TMPFL_SER = "Serious AE",
        TMPFL_REL = "Related AE",
        TMPFL_GR5 = "Grade 5 AE",
        TMP_SMQ01 = aesi_label(dat[["SMQ01NAM"]], dat[["SMQ01SC"]]),
        TMP_SMQ02 = aesi_label(dat[["SMQ02NAM"]], dat[["SMQ02SC"]]),
        TMP_CQ01 = aesi_label(dat[["CQ01NAM"]])
      )
  }

  # Generating user-defined event flags.
  ADAE <- ADAE %>% add_event_flags()
})
datanames <- c("ADSL", "ADAE")
datanames(data) <- datanames
join_keys(data) <- default_cdisc_join_keys[datanames]

## Reusable Configuration For Modules
ADSL <- data[["ADSL"]]
ADAE <- data[["ADAE"]]
ae_anl_vars <- names(ADAE)[startsWith(names(ADAE), "TMPFL_")]
aesi_vars <- names(ADAE)[startsWith(names(ADAE), "TMP_")]

## Setup App
app <- init(
  data = data,
  modules = modules(
    tm_t_events_summary(
      label = "Adverse Events Summary",
      dataname = "ADAE",
      arm_var = choices_selected(
        choices = variable_choices("ADSL", c("ARM", "ARMCD")),
        selected = "ARM"
      ),
      flag_var_anl = choices_selected(
        choices = variable_choices("ADAE", ae_anl_vars),
        selected = ae_anl_vars[1],
        keep_order = TRUE,
        fixed = FALSE
      ),
      flag_var_aesi = choices_selected(
        choices = variable_choices("ADAE", aesi_vars),
        selected = aesi_vars[1],
        keep_order = TRUE,
        fixed = FALSE
      ),
      add_total = TRUE
    )
  )
)

shinyApp(app$ui, app$server)

Reproducibility

Timestamp

[1] "2025-07-05 17:56:09 UTC"

Session Info

─ Session info ───────────────────────────────────────────────────────────────
 setting  value
 version  R version 4.5.0 (2025-04-11)
 os       Ubuntu 24.04.2 LTS
 system   x86_64, linux-gnu
 ui       X11
 language (EN)
 collate  en_US.UTF-8
 ctype    en_US.UTF-8
 tz       Etc/UTC
 date     2025-07-05
 pandoc   3.7.0.2 @ /usr/bin/ (via rmarkdown)
 quarto   1.7.32 @ /usr/local/bin/quarto

─ Packages ───────────────────────────────────────────────────────────────────
 package               * version  date (UTC) lib source
 backports               1.5.0    2024-05-23 [1] RSPM
 brio                    1.1.5    2024-04-24 [1] RSPM
 broom                   1.0.8    2025-03-28 [1] RSPM
 bslib                   0.9.0    2025-01-30 [1] RSPM
 cachem                  1.1.0    2024-05-16 [1] RSPM
 callr                   3.7.6    2024-03-25 [1] RSPM
 checkmate               2.3.2    2024-07-29 [1] RSPM
 chromote                0.5.1    2025-04-24 [1] RSPM
 cli                     3.6.5    2025-04-23 [1] RSPM
 coda                    0.19-4.1 2024-01-31 [1] CRAN (R 4.5.0)
 codetools               0.2-20   2024-03-31 [2] CRAN (R 4.5.0)
 curl                    6.4.0    2025-06-22 [1] RSPM
 dichromat               2.0-0.1  2022-05-02 [1] CRAN (R 4.5.0)
 digest                  0.6.37   2024-08-19 [1] RSPM
 dplyr                 * 1.1.4    2023-11-17 [1] RSPM
 emmeans                 1.11.1   2025-05-04 [1] RSPM
 estimability            1.5.1    2024-05-12 [1] RSPM
 evaluate                1.0.4    2025-06-18 [1] RSPM
 farver                  2.1.2    2024-05-13 [1] RSPM
 fastmap                 1.2.0    2024-05-15 [1] RSPM
 fontawesome             0.5.3    2024-11-16 [1] RSPM
 forcats                 1.0.0    2023-01-29 [1] RSPM
 formatR                 1.14     2023-01-17 [1] CRAN (R 4.5.0)
 formatters            * 0.5.11   2025-04-09 [1] RSPM
 geepack                 1.3.12   2024-09-23 [1] RSPM
 generics                0.1.4    2025-05-09 [1] RSPM
 ggplot2                 3.5.2    2025-04-09 [1] RSPM
 glue                    1.8.0    2024-09-30 [1] RSPM
 gtable                  0.3.6    2024-10-25 [1] RSPM
 htmltools               0.5.8.1  2024-04-04 [1] RSPM
 htmlwidgets             1.6.4    2023-12-06 [1] RSPM
 httpuv                  1.6.16   2025-04-16 [1] RSPM
 jquerylib               0.1.4    2021-04-26 [1] RSPM
 jsonlite                2.0.0    2025-03-27 [1] RSPM
 knitr                   1.50     2025-03-16 [1] RSPM
 later                   1.4.2    2025-04-08 [1] RSPM
 lattice                 0.22-7   2025-04-02 [2] CRAN (R 4.5.0)
 lifecycle               1.0.4    2023-11-07 [1] RSPM
 logger                  0.4.0    2024-10-22 [1] RSPM
 magrittr              * 2.0.3    2022-03-30 [1] RSPM
 MASS                    7.3-65   2025-02-28 [2] CRAN (R 4.5.0)
 Matrix                  1.7-3    2025-03-11 [1] CRAN (R 4.5.0)
 memoise                 2.0.1    2021-11-26 [1] RSPM
 mime                    0.13     2025-03-17 [1] RSPM
 multcomp                1.4-28   2025-01-29 [1] RSPM
 mvtnorm                 1.3-3    2025-01-10 [1] RSPM
 nestcolor               0.1.3    2025-01-21 [1] RSPM
 nlme                    3.1-168  2025-03-31 [2] CRAN (R 4.5.0)
 pillar                  1.11.0   2025-07-04 [1] RSPM
 pkgcache                2.2.4    2025-05-26 [1] RSPM
 pkgconfig               2.0.3    2019-09-22 [1] RSPM
 processx                3.8.6    2025-02-21 [1] RSPM
 promises                1.3.3    2025-05-29 [1] RSPM
 ps                      1.9.1    2025-04-12 [1] RSPM
 purrr                   1.0.4    2025-02-05 [1] RSPM
 R6                      2.6.1    2025-02-15 [1] RSPM
 random.cdisc.data       0.3.16   2024-10-10 [1] RSPM
 rbibutils               2.3      2024-10-04 [1] RSPM
 RColorBrewer            1.1-3    2022-04-03 [1] RSPM
 Rcpp                    1.1.0    2025-07-02 [1] RSPM
 Rdpack                  2.6.4    2025-04-09 [1] RSPM
 rlang                   1.1.6    2025-04-11 [1] RSPM
 rmarkdown               2.29     2024-11-04 [1] RSPM
 rtables               * 0.6.13   2025-06-19 [1] RSPM
 sandwich                3.1-1    2024-09-15 [1] RSPM
 sass                    0.4.10   2025-04-11 [1] RSPM
 scales                  1.4.0    2025-04-24 [1] RSPM
 sessioninfo             1.2.3    2025-02-05 [1] any (@1.2.3)
 shiny                 * 1.11.1   2025-07-03 [1] RSPM
 shinycssloaders         1.1.0    2024-07-30 [1] RSPM
 shinyjs                 2.1.0    2021-12-23 [1] RSPM
 shinyvalidate           0.1.3    2023-10-04 [1] RSPM
 shinyWidgets            0.9.0    2025-02-21 [1] RSPM
 stringi                 1.8.7    2025-03-27 [1] RSPM
 stringr                 1.5.1    2023-11-14 [1] RSPM
 survival                3.8-3    2024-12-17 [2] CRAN (R 4.5.0)
 teal                  * 0.16.0   2025-02-23 [1] RSPM
 teal.code             * 0.6.1    2025-02-14 [1] RSPM
 teal.data             * 0.7.0    2025-01-28 [1] RSPM
 teal.logger             0.3.2    2025-02-14 [1] RSPM
 teal.modules.clinical * 0.10.0   2025-02-28 [1] RSPM
 teal.reporter           0.4.0    2025-01-24 [1] RSPM
 teal.slice            * 0.6.0    2025-02-03 [1] RSPM
 teal.transform        * 0.6.0    2025-02-12 [1] RSPM
 teal.widgets            0.4.3    2025-01-31 [1] RSPM
 tern                  * 0.9.9    2025-06-20 [1] RSPM
 tern.gee                0.1.5    2024-08-23 [1] RSPM
 testthat                3.2.3    2025-01-13 [1] RSPM
 TH.data                 1.1-3    2025-01-17 [1] RSPM
 tibble                  3.3.0    2025-06-08 [1] RSPM
 tidyr                   1.3.1    2024-01-24 [1] RSPM
 tidyselect              1.2.1    2024-03-11 [1] RSPM
 vctrs                   0.6.5    2023-12-01 [1] RSPM
 webshot                 0.5.5    2023-06-26 [1] CRAN (R 4.5.0)
 webshot2                0.1.2    2025-04-23 [1] RSPM
 websocket               1.4.4    2025-04-10 [1] RSPM
 withr                   3.0.2    2024-10-28 [1] RSPM
 xfun                    0.52     2025-04-02 [1] RSPM
 xtable                  1.8-4    2019-04-21 [1] RSPM
 yaml                    2.3.10   2024-07-26 [1] RSPM
 zoo                     1.8-14   2025-04-10 [1] RSPM

 [1] /usr/local/lib/R/site-library
 [2] /usr/local/lib/R/library
 [3] /github/home/R/x86_64-pc-linux-gnu-library/4.5
 * ── Packages attached to the search path.

──────────────────────────────────────────────────────────────────────────────

.lock file

Download the .lock file and use renv::restore() on it to recreate environment used to generate this website.

Download

ADAT04B
AET01_AESI
Source Code
---
title: AET01
subtitle: Overview of Deaths and Adverse Events
---

------------------------------------------------------------------------

{{< include ../../_utils/envir_hook.qmd >}}

```{r setup, echo = FALSE, warning = FALSE, message = FALSE}
library(tern)
library(dplyr)

adsl <- random.cdisc.data::cadsl
adae <- random.cdisc.data::cadae

# Ensure character variables are converted to factors and empty strings and NAs are explicit missing levels.
adsl <- df_explicit_na(adsl)
adae <- df_explicit_na(
  adae,
  omit_columns = c("SMQ01NAM", "SMQ01SC", "SMQ02NAM", "SMQ02SC", "CQ01NAM", "STUDYID", "USUBJID")
)

set.seed(99)

adae <- adae %>%
  mutate(
    AEDECOD = with_label(as.character(AEDECOD), "Dictionary-Derived Term"),
    AESDTH = with_label(
      sample(c("N", "Y"), size = nrow(adae), replace = TRUE, prob = c(0.99, 0.01)),
      "Results in Death"
    ),
    AEACN = with_label(
      sample(
        c("DOSE NOT CHANGED", "DOSE INCREASED", "DRUG INTERRUPTED", "DRUG WITHDRAWN"),
        size = nrow(adae),
        replace = TRUE, prob = c(0.68, 0.02, 0.25, 0.05)
      ),
      "Action Taken with Study Treatment"
    ),
    FATAL = with_label(AESDTH == "Y", "AE with fatal outcome"),
    SEV = with_label(AESEV == "SEVERE", "Severe AE (at greatest intensity)"),
    SER = with_label(AESER == "Y", "Serious AE"),
    SERWD = with_label(AESER == "Y" & AEACN == "DRUG WITHDRAWN", "Serious AE leading to withdrawal from treatment"),
    SERDSM = with_label(
      AESER == "Y" & AEACN %in% c("DRUG INTERRUPTED", "DOSE INCREASED", "DOSE REDUCED"),
      "Serious AE leading to dose modification/interruption"
    ),
    RELSER = with_label(AESER == "Y" & AEREL == "Y", "Related Serious AE"),
    WD = with_label(AEACN == "DRUG WITHDRAWN", "AE leading to withdrawal from treatment"),
    DSM = with_label(
      AEACN %in% c("DRUG INTERRUPTED", "DOSE INCREASED", "DOSE REDUCED"), "AE leading to dose modification/interruption"
    ),
    REL = with_label(AEREL == "Y", "Related AE"),
    RELWD = with_label(AEREL == "Y" & AEACN == "DRUG WITHDRAWN", "Related AE leading to withdrawal from treatment"),
    RELDSM = with_label(
      AEREL == "Y" & AEACN %in% c("DRUG INTERRUPTED", "DOSE INCREASED", "DOSE REDUCED"),
      "Related AE leading to dose modification/interruption"
    ),
    CTC35 = with_label(AETOXGR %in% c("3", "4", "5"), "Grade 3-5 AE"),
    CTC45 = with_label(AETOXGR %in% c("4", "5"), "Grade 4/5 AE"),
    SMQ01 = with_label(SMQ01NAM != "", aesi_label(adae$SMQ01NAM, adae$SMQ01SC)),
    SMQ02 = with_label(SMQ02NAM != "", aesi_label(adae$SMQ02NAM, adae$SMQ02SC)),
    CQ01 = with_label(CQ01NAM != "", aesi_label(adae$CQ01NAM)),
    USUBJID_AESEQ = paste(USUBJID, AESEQ, sep = "@@") # Create unique ID per AE in dataset.
  ) %>%
  filter(ANL01FL == "Y")
```

```{r include = FALSE}
webr_code_labels <- c("setup")
```

{{< include ../../_utils/webr_no_include.qmd >}}

## Output

::::::: panel-tabset
## Standard Table

::: {.panel-tabset .nav-justified group="webr"}
## {{< fa regular file-lines sm fw >}} Preview

```{r variant1, test = list(result_v1 = "result")}
aesi_vars <- c("FATAL", "SER", "SERWD", "SERDSM", "RELSER", "WD", "DSM", "REL", "RELWD", "RELDSM", "SEV")

# Layout for variables from adsl dataset.
lyt_adsl <- basic_table(show_colcounts = TRUE) %>%
  split_cols_by("ACTARM") %>%
  count_patients_with_event(
    "USUBJID",
    filters = c("DTHFL" = "Y"),
    denom = "N_col",
    .labels = c(count_fraction = "Total number of deaths")
  ) %>%
  count_patients_with_event(
    "USUBJID",
    filters = c("DCSREAS" = "ADVERSE EVENT"),
    denom = "N_col",
    .labels = c(count_fraction = "Total number of patients withdrawn from study due to an AE"),
    table_names = "tot_wd"
  )

result_adsl <- build_table(lyt_adsl, df = adsl, alt_counts_df = adsl)

# Layout for variables from adae dataset.
lyt_adae <- basic_table(show_colcounts = TRUE) %>%
  split_cols_by("ACTARM") %>%
  analyze_num_patients(
    vars = "USUBJID",
    .stats = c("unique", "nonunique"),
    .labels = c(
      unique = "Total number of patients with at least one AE",
      nonunique = "Total number of AEs"
    ),
    .formats = list(unique = format_count_fraction_fixed_dp, nonunique = "xx"),
    show_labels = "hidden"
  ) %>%
  count_patients_with_flags(
    "USUBJID",
    flag_variables = aesi_vars,
    denom = "N_col",
    var_labels = "Total number of patients with at least one",
    show_labels = "visible"
  )

result_adae <- build_table(lyt_adae, df = adae, alt_counts_df = adsl)

# Combine tables.
col_info(result_adsl) <- col_info(result_adae)
result <- rbind(
  result_adae[1:2, ],
  result_adsl,
  result_adae[3:nrow(result_adae), ]
)

result
```

```{r include = FALSE}
webr_code_labels <- c("variant1")
```

{{< include ../../_utils/webr.qmd >}}
:::

## Table with Medical <br/> Concepts Section

::: {.panel-tabset .nav-justified group="webr"}
## {{< fa regular file-lines sm fw >}} Preview

```{r variant2, test = list(result_v2 = "result")}
aesi_vars <- c("FATAL", "SER", "SERWD", "SERDSM", "RELSER", "WD", "DSM", "REL", "RELWD", "RELDSM", "CTC35")
basket_vars <- c("SMQ01", "SMQ02", "CQ01")

# Layout for variables from adsl dataset.
lyt_adsl <- basic_table(show_colcounts = TRUE) %>%
  split_cols_by("ACTARM") %>%
  count_patients_with_event(
    "USUBJID",
    filters = c("DTHFL" = "Y"),
    denom = "N_col",
    .labels = c(count_fraction = "Total number of deaths")
  ) %>%
  count_patients_with_event(
    "USUBJID",
    filters = c("DCSREAS" = "ADVERSE EVENT"),
    denom = "N_col",
    .labels = c(count_fraction = "Total number of patients withdrawn from study due to an AE"),
    table_names = "tot_wd"
  )

result_adsl <- build_table(lyt_adsl, df = adsl, alt_counts_df = adsl)

# Layout for variables from adae dataset.
lyt_adae <- basic_table(show_colcounts = TRUE) %>%
  split_cols_by("ACTARM") %>%
  analyze_num_patients(
    vars = "USUBJID",
    .stats = c("unique", "nonunique"),
    .labels = c(
      unique = "Total number of patients with at least one AE",
      nonunique = "Total number of AEs"
    ),
    .formats = list(unique = format_count_fraction_fixed_dp, nonunique = "xx"),
    show_labels = "hidden"
  ) %>%
  count_patients_with_flags(
    "USUBJID",
    flag_variables = aesi_vars,
    denom = "N_col",
    var_labels = "Total number of patients with at least one",
    show_labels = "visible"
  ) %>%
  count_patients_with_flags(
    "USUBJID",
    flag_variables = basket_vars,
    table_names = "table_aesi",
    denom = "N_col",
    var_labels = "Total number of patients with at least one",
    show_labels = "visible"
  )

result_adae <- build_table(lyt_adae, df = adae, alt_counts_df = adsl)

# Combine tables.
col_info(result_adsl) <- col_info(result_adae)
result <- rbind(
  result_adae[1:2, ],
  result_adsl,
  result_adae[3:nrow(result_adae), ]
)

result
```

```{r include = FALSE}
webr_code_labels <- c("variant2")
```

{{< include ../../_utils/webr.qmd >}}
:::

## Table with <br/> Modified Rows

::: {.panel-tabset .nav-justified group="webr"}
## {{< fa regular file-lines sm fw >}} Preview

```{r variant3, test = list(result_v3 = "result")}
aesi_vars <- c("FATAL", "SER", "WD", "REL", "CTC35", "CTC45")
# Layout for variables from adsl dataset.
lyt_adsl <- basic_table(show_colcounts = TRUE) %>%
  split_cols_by("ACTARM") %>%
  count_patients_with_event(
    "USUBJID",
    filters = c("DTHFL" = "Y"),
    denom = "N_col",
    .labels = c(count_fraction = "Total number of deaths")
  ) %>%
  count_patients_with_event(
    "USUBJID",
    filters = c("DCSREAS" = "ADVERSE EVENT"),
    denom = "N_col",
    .labels = c(count_fraction = "Total number of patients withdrawn from study due to an AE"),
    table_names = "tot_wd"
  ) %>%
  count_patients_with_event(
    "USUBJID",
    filters = c("DCSREAS" = "WITHDRAWAL BY SUBJECT"),
    denom = "N_col",
    .labels = c(count_fraction = "Total number of patients withdrawn informed consent"),
    table_names = "tot_dscsreas_wd"
  )
result_adsl <- build_table(lyt_adsl, df = adsl, alt_counts_df = adsl)

# Layout for variables from adae dataset.
lyt_adae <- basic_table(show_colcounts = TRUE) %>%
  split_cols_by("ACTARM") %>%
  analyze_num_patients(
    vars = "USUBJID",
    .stats = c("unique", "nonunique"),
    .labels = c(
      unique = "Total number of patients with at least one AE",
      nonunique = "Total number of AEs"
    ),
    .formats = list(unique = format_count_fraction_fixed_dp, nonunique = "xx"),
    show_labels = "hidden"
  ) %>%
  count_patients_with_flags(
    "USUBJID",
    flag_variables = aesi_vars,
    denom = "N_col",
    var_labels = "Total number of patients with at least one",
    show_labels = "visible"
  )
result_adae <- build_table(lyt_adae, df = adae, alt_counts_df = adsl)

# Combine tables.
col_info(result_adsl) <- col_info(result_adae)
result <- rbind(
  result_adae[1:2, ],
  result_adsl,
  result_adae[3:nrow(result_adae), ]
)

result
```

```{r include = FALSE}
webr_code_labels <- c("variant3")
```

{{< include ../../_utils/webr.qmd >}}
:::

## Table with Rows Counting <br/> Events & Additional Sections

::: {.panel-tabset .nav-justified group="webr"}
## {{< fa regular file-lines sm fw >}} Preview

```{r variant4, test = list(result_v4 = "result")}
count_subj_vars <- c("FATAL", "SER", "WD", "DSM", "REL", "CTC35")
count_term_vars <- c("SER", "DSM", "REL", "CTC35", "CTC45")
count_ae_vars <- c("SER", "DSM", "REL", "CTC35", "CTC45")

# Layout for variables from adsl dataset.
lyt_adsl <- basic_table(show_colcounts = TRUE) %>%
  split_cols_by("ACTARM") %>%
  count_patients_with_event(
    "USUBJID",
    filters = c("DTHFL" = "Y"),
    denom = "N_col",
    .labels = c(count_fraction = "Total number of deaths")
  ) %>%
  count_patients_with_event(
    "USUBJID",
    filters = c("DCSREAS" = "ADVERSE EVENT"),
    denom = "N_col",
    .labels = c(count_fraction = "Total number of patients withdrawn from study due to an AE"),
    table_names = "tot_wd"
  )

result_adsl <- build_table(lyt_adsl, df = adsl, alt_counts_df = adsl)

# Layout for variables from adae dataset.
lyt_adae <- basic_table(show_colcounts = TRUE) %>%
  split_cols_by("ACTARM") %>%
  analyze_num_patients(
    vars = "USUBJID",
    .stats = c("unique", "nonunique"),
    .labels = c(
      unique = "Total number of patients with at least one AE",
      nonunique = "Total number of AEs"
    ),
    .formats = list(unique = format_count_fraction_fixed_dp, nonunique = "xx"),
    show_labels = "hidden"
  ) %>%
  count_patients_with_flags(
    "USUBJID",
    flag_variables = count_subj_vars,
    denom = "N_col",
    var_labels = "Total number of patients with at least one",
    show_labels = "visible"
  ) %>%
  count_patients_with_flags(
    "AEDECOD",
    flag_variables = count_term_vars,
    .stats = "count",
    .formats = c(count = "xx"),
    table_names = "table_term",
    var_labels = "Total number of unique preferred terms which are",
    show_labels = "visible"
  ) %>%
  count_patients_with_flags(
    "USUBJID_AESEQ",
    flag_variables = count_ae_vars,
    .stats = "count",
    .formats = c(count = "xx"),
    table_names = "table_ae",
    var_labels = "Total number of adverse events which are",
    show_labels = "visible"
  )

result_adae <- build_table(lyt_adae, df = adae, alt_counts_df = adsl)

# Combine tables.
col_info(result_adsl) <- col_info(result_adae)
result <- rbind(
  result_adae[1:2, ],
  result_adsl,
  result_adae[3:nrow(result_adae), ]
)

result
```

```{r include = FALSE}
webr_code_labels <- c("variant4")
```

{{< include ../../_utils/webr.qmd >}}
:::

## Data Setup

To illustrate, additional variables such as flags (TRUE/FALSE) for select AEs of interest and select AE baskets are added to the `adae` dataset.

```{r setup}
#| code-fold: show
```
:::::::

{{< include ../../_utils/save_results.qmd >}}

## `teal` App

::: {.panel-tabset .nav-justified}
## {{< fa regular file-lines fa-sm fa-fw >}} Preview

```{r teal, opts.label = c("skip_if_testing", "app")}
library(teal.modules.clinical)

## Data reproducible code
data <- teal_data()
data <- within(data, {
  library(dplyr)

  ADSL <- random.cdisc.data::cadsl
  ADAE <- random.cdisc.data::cadae

  add_event_flags <- function(dat) {
    dat %>%
      mutate(
        TMPFL_SER = AESER == "Y",
        TMPFL_REL = AEREL == "Y",
        TMPFL_GR5 = AETOXGR == "5",
        TMP_SMQ01 = !is.na(SMQ01NAM),
        TMP_SMQ02 = !is.na(SMQ02NAM),
        TMP_CQ01 = !is.na(CQ01NAM)
      ) %>%
      col_relabel(
        TMPFL_SER = "Serious AE",
        TMPFL_REL = "Related AE",
        TMPFL_GR5 = "Grade 5 AE",
        TMP_SMQ01 = aesi_label(dat[["SMQ01NAM"]], dat[["SMQ01SC"]]),
        TMP_SMQ02 = aesi_label(dat[["SMQ02NAM"]], dat[["SMQ02SC"]]),
        TMP_CQ01 = aesi_label(dat[["CQ01NAM"]])
      )
  }

  # Generating user-defined event flags.
  ADAE <- ADAE %>% add_event_flags()
})
datanames <- c("ADSL", "ADAE")
datanames(data) <- datanames
join_keys(data) <- default_cdisc_join_keys[datanames]

## Reusable Configuration For Modules
ADSL <- data[["ADSL"]]
ADAE <- data[["ADAE"]]
ae_anl_vars <- names(ADAE)[startsWith(names(ADAE), "TMPFL_")]
aesi_vars <- names(ADAE)[startsWith(names(ADAE), "TMP_")]

## Setup App
app <- init(
  data = data,
  modules = modules(
    tm_t_events_summary(
      label = "Adverse Events Summary",
      dataname = "ADAE",
      arm_var = choices_selected(
        choices = variable_choices("ADSL", c("ARM", "ARMCD")),
        selected = "ARM"
      ),
      flag_var_anl = choices_selected(
        choices = variable_choices("ADAE", ae_anl_vars),
        selected = ae_anl_vars[1],
        keep_order = TRUE,
        fixed = FALSE
      ),
      flag_var_aesi = choices_selected(
        choices = variable_choices("ADAE", aesi_vars),
        selected = aesi_vars[1],
        keep_order = TRUE,
        fixed = FALSE
      ),
      add_total = TRUE
    )
  )
)

shinyApp(app$ui, app$server)
```

{{< include ../../_utils/shinylive.qmd >}}
:::

{{< include ../../repro.qmd >}}

Made with ❤️ by the NEST Team

  • Edit this page
  • Report an issue
Cookie Preferences