TLG Catalog - Stable
  • Stable
    • Dev
  1. Tables
  2. ADA
  3. ADAT04B
  • Introduction

  • Tables
    • ADA
      • ADAT01
      • ADAT02
      • ADAT03
      • ADAT04A
      • ADAT04B
    • Adverse Events
      • AET01
      • AET01_AESI
      • AET02
      • AET02_SMQ
      • AET03
      • AET04
      • AET04_PI
      • AET05
      • AET05_ALL
      • AET06
      • AET06_SMQ
      • AET07
      • AET09
      • AET09_SMQ
      • AET10
    • Concomitant Medications
      • CMT01
      • CMT01A
      • CMT01B
      • CMT02_PT
    • Deaths
      • DTHT01
    • Demography
      • DMT01
    • Disclosures
      • DISCLOSUREST01
      • EUDRAT01
      • EUDRAT02
    • Disposition
      • DST01
      • PDT01
      • PDT02
    • ECG
      • EGT01
      • EGT02
      • EGT03
      • EGT04
      • EGT05_QTCAT
    • Efficacy
      • AOVT01
      • AOVT02
      • AOVT03
      • CFBT01
      • CMHT01
      • COXT01
      • COXT02
      • DORT01
      • LGRT02
      • MMRMT01
      • ONCT05
      • RATET01
      • RBMIT01
      • RSPT01
      • TTET01
    • Exposure
      • EXT01
    • Lab Results
      • LBT01
      • LBT02
      • LBT03
      • LBT04
      • LBT05
      • LBT06
      • LBT07
      • LBT08
      • LBT09
      • LBT10
      • LBT10_BL
      • LBT11
      • LBT11_BL
      • LBT12
      • LBT12_BL
      • LBT13
      • LBT14
      • LBT15
    • Medical History
      • MHT01
    • Pharmacokinetic
      • PKCT01
      • PKPT02
      • PKPT03
      • PKPT04
      • PKPT05
      • PKPT06
      • PKPT07
      • PKPT08
      • PKPT11
    • Risk Management Plan
      • RMPT01
      • RMPT03
      • RMPT04
      • RMPT05
      • RMPT06
    • Safety
      • ENTXX
    • Vital Signs
      • VST01
      • VST02
  • Listings
    • ADA
      • ADAL02
    • Adverse Events
      • AEL01
      • AEL01_NOLLT
      • AEL02
      • AEL02_ED
      • AEL03
      • AEL04
    • Concomitant Medications
      • CML01
      • CML02A_GL
      • CML02B_GL
    • Development Safety Update Report
      • DSUR4
    • Disposition
      • DSL01
      • DSL02
    • ECG
      • EGL01
    • Efficacy
      • ONCL01
    • Exposure
      • EXL01
    • Lab Results
      • LBL01
      • LBL01_RLS
      • LBL02A
      • LBL02A_RLS
      • LBL02B
    • Medical History
      • MHL01
    • Pharmacokinetic
      • ADAL01
      • PKCL01
      • PKCL02
      • PKPL01
      • PKPL02
      • PKPL04
    • Vital Signs
      • VSL01
  • Graphs
    • Efficacy
      • FSTG01
      • FSTG02
      • KMG01
      • MMRMG01
      • MMRMG02
    • Other
      • BRG01
      • BWG01
      • CIG01
      • IPPG01
      • LTG01
      • MNG01
    • Pharmacokinetic
      • PKCG01
      • PKCG02
      • PKCG03
      • PKPG01
      • PKPG02
      • PKPG03
      • PKPG04
      • PKPG06

  • Appendix
    • Reproducibility

  • Index

On this page

  • Output
  • Reproducibility
    • Timestamp
    • Session Info
    • .lock file
  • Edit this page
  • Report an issue
  1. Tables
  2. ADA
  3. ADAT04B

ADAT04B

Baseline Prevalence and Incidence of NAbs


Output

  • Standard Table
  • Data Setup
  • Preview
  • Try this using WebR
Code
# Layout for Baseline Prevalence of NAbs
lyt_bl <- basic_table(show_colcounts = TRUE) %>%
  split_cols_by(
    "ACTARM",
    split_fun = custom_column_split_fun
  ) %>%
  count_patients_with_flags(
    "USUBJID",
    flag_variables = c("ADABLPFL", "PADABLPFL"),
    .stats = "count",
    var_labels = "Baseline Prevalence of NAbs",
    show_labels = "visible",
    table_names = "t1"
  ) %>%
  count_patients_with_flags(
    "USUBJID",
    flag_variables = "PNABBLFL",
    table_names = "t2",
    .indent_mods = 1L,
    show_labels = "hidden"
  ) %>%
  count_patients_with_flags(
    "USUBJID",
    flag_variables = "NNABBLFL",
    .stats = "count",
    table_names = "t3",
    .indent_mods = 1L,
    show_labels = "hidden"
  )

# Layout for incidence of NAbs
lyt_pb <- basic_table(show_colcounts = TRUE) %>%
  split_cols_by(
    "ACTARM",
    split_fun = custom_column_split_fun
  ) %>%
  count_patients_with_flags(
    "USUBJID",
    flag_variables = c("ADPBLPFL", "ADAPFL"),
    .stats = "count",
    var_labels = "Incidence of NAbs",
    show_labels = "visible",
    table_names = "tb1"
  ) %>%
  count_patients_with_flags(
    "USUBJID",
    flag_variables = "NABPFL",
    table_names = "tb2",
    .indent_mods = 1L,
    show_labels = "hidden"
  ) %>%
  count_patients_with_flags(
    "USUBJID",
    flag_variables = "NABNFL",
    .stats = "count",
    table_names = "tb3",
    .indent_mods = 1L,
    show_labels = "hidden"
  )

result_1 <- build_table(lyt_bl, df = adab_b, alt_counts_df = adsl)
result_2 <- build_table(lyt_pb, df = adab_pb, alt_counts_df = adsl)

# Combine tables.
result <- rbind(result_1, result_2)

main_title(result) <- paste(
  "Baseline Prevalence and Incidence of Neutralizing Antibodies (NAbs)"
)
subtitles(result) <- paste("Protocol:", unique(adab$PARCAT1)[1])

main_footer(result) <- "NAb = Neutralizing Antibodies ADA = Anti-Drug Antibodies (is also referred to as ATA, or Anti-Therapeutic Antibodies) Baseline evaluable patient for ADA = a patient with an ADA assay result from a baseline sample(s) Baseline evaluable patient for NAb = a patient with a NAb assay result from a baseline sample(s) Post-baseline evaluable patient for ADA = a patient with an ADA assay result from at least one post-baseline sample Post-baseline evaluable patient for NAb = a patient with a NAb assay result from at least one post-baseline sample Number of patients positive for ADA = the number of post-baseline evaluable patients for ADA determined to have Treatment Emergent ADA during the study period.
Number of patients positive for NAb = the number (and percentage) of post-baseline evaluable patients for ADA determined to have at least one positive post-baseline NAb result during the study period. Number of patients negative for NAb = number of post-baseline evaluable patients with all negative post-baseline NAb results."

result
Baseline Prevalence and Incidence of Neutralizing Antibodies (NAbs)
Protocol: A: Drug X Antibody

————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————
                                                     A: Drug X   C: Combination   All Drug X   B: Placebo   All Patients
                                                      (N=134)       (N=132)        (N=266)      (N=134)       (N=400)   
————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————
Baseline Prevalence of NAbs                                                                                             
  Baseline evaluable patients for ADA                   134           132            266           0            266     
  Patients with a positive ADA sample at baseline       63             64            127           0            127     
  Patients with a positive NAb sample at baseline        0             0              0            0             0      
  Patients with no positive NAb sample at baseline       0             0              0            0             0      
Incidence of NAbs                                                                                                       
  Post-baseline evaluable patients for ADA              134           132            266           0            266     
  Patients positive for ADA                             66             59            125           0            125     
  Patients positive for NAb                              0             0              0            0             0      
  Patients negative for NAb                             134           132            266           0            266     
————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————

NAb = Neutralizing Antibodies ADA = Anti-Drug Antibodies (is also referred to as ATA, or Anti-Therapeutic Antibodies) Baseline evaluable patient for ADA = a patient with an ADA assay result from a baseline sample(s) Baseline evaluable patient for NAb = a patient with a NAb assay result from a baseline sample(s) Post-baseline evaluable patient for ADA = a patient with an ADA assay result from at least one post-baseline sample Post-baseline evaluable patient for NAb = a patient with a NAb assay result from at least one post-baseline sample Number of patients positive for ADA = the number of post-baseline evaluable patients for ADA determined to have Treatment Emergent ADA during the study period.
Number of patients positive for NAb = the number (and percentage) of post-baseline evaluable patients for ADA determined to have at least one positive post-baseline NAb result during the study period. Number of patients negative for NAb = number of post-baseline evaluable patients with all negative post-baseline NAb results.
Experimental use!

WebR is a tool allowing you to run R code in the web browser. Modify the code below and click run to see the results. Alternatively, copy the code and click here to open WebR in a new tab.

Code
library(tern)
library(dplyr)
library(tibble)

adsl <- random.cdisc.data::cadsl
adab <- random.cdisc.data::cadab

# Order needed for the columns is c(1, 3, 4, 2, 5)
reorder_facets <- function(splret, spl, fulldf, ...) {
  ord <- c(1, 3, 4, 2, 5)
  make_split_result(
    splret$values[ord],
    splret$datasplit[ord],
    splret$labels[ord]
  )
}

# Create a custom split function for adding the new columns (facets) and sorting them
custom_column_split_fun <- make_split_fun(
  post = list(
    add_combo_facet("all_X",
      label = "All Drug X",
      levels = c("A: Drug X", "C: Combination")
    ),
    add_combo_facet("all_pt",
      label = "All Patients",
      levels = c("A: Drug X", "B: Placebo", "C: Combination")
    ),
    reorder_facets
  )
)

# Ensure character variables are converted to factors and empty strings and NAs are explicit missing levels.
adsl <- df_explicit_na(adsl)

# Baseline Pts
adab_b <- df_explicit_na(adab) %>%
  filter(
    ABLFL == "Y",
    ADABLPFL == "Y",
    PARAM %in% c(
      "ADA interpreted per sample result",
      "NAB interpreted per sample result"
    )
  ) %>%
  select(-PARAMCD, -AVALC, -AVALU) %>%
  tidyr::pivot_wider(
    names_from = PARAM,
    values_from = AVAL
  ) %>%
  mutate(
    across(
      any_of(c(
        "ADA interpreted per sample result",
        "NAB interpreted per sample result"
      )),
      as.logical
    )
  ) %>%
  mutate(
    ADABLPFL = ADABLPFL == "Y",
    PADABLPFL = if (exists("ADA interpreted per sample result", where = .)) {
      `ADA interpreted per sample result` == "TRUE"
    } else {
      FALSE
    },
    PNABBLFL = if (exists("NAB interpreted per sample result", where = .)) {
      `NAB interpreted per sample result` == "TRUE"
    } else {
      FALSE
    },
    NNABBLFL = if (exists("NAB interpreted per sample result", where = .)) {
      `NAB interpreted per sample result` == "FALSE"
    } else {
      FALSE
    }
  ) %>%
  var_relabel(
    ADABLPFL = "Baseline evaluable patients for ADA",
    PADABLPFL = "Patients with a positive ADA sample at baseline",
    PNABBLFL = "Patients with a positive NAb sample at baseline",
    NNABBLFL = "Patients with no positive NAb sample at baseline"
  )

# Post-Baseline Evaluable Pts
adab_pb_ada <- df_explicit_na(adab) %>%
  filter(ADPBLPFL == "Y") %>%
  select(STUDYID, USUBJID, ARM, ACTARM, ADPBLPFL) %>%
  mutate(ADPBLPFL = ADPBLPFL == "Y") %>%
  distinct()

# Post-Baseline ADA Positive Pts
adab_pb_adap <- df_explicit_na(adab) %>%
  filter(
    ABLFL != "Y",
    PARAM == "ADA interpreted per sample result",
    AVALC == "POSITIVE"
  ) %>%
  mutate(ADAPFL = AVALC == "POSITIVE") %>%
  select(STUDYID, USUBJID, ARM, ACTARM, ADAPFL) %>%
  distinct()

# Post-Baseline NAb Positive Pts
adab_pb_nabp <- df_explicit_na(adab) %>%
  filter(
    ABLFL != "Y",
    PARAM == "NAb interpreted per sample result",
    AVALC == "POSITIVE"
  ) %>%
  mutate(NABPFL = AVALC == "POSITIVE") %>%
  select(STUDYID, USUBJID, ARM, ACTARM, NABPFL) %>%
  distinct()

# Post-Baseline NAb Negative Pts
adab_pb_nabn <- df_explicit_na(adab) %>%
  filter(
    ABLFL != "Y",
    PARAM == "NAb interpreted per sample result",
    AVALC == "NEGATIVE"
  ) %>%
  rename(NABNFL = AVALC) %>%
  select(STUDYID, USUBJID, ARM, ACTARM, NABNFL) %>%
  distinct()

mergecol <- c("STUDYID", "USUBJID", "ARM", "ACTARM")

adab_pb <- left_join(adab_pb_ada, adab_pb_adap, by = mergecol) %>%
  left_join(adab_pb_nabp, by = mergecol) %>%
  mutate(
    NABNFL = ifelse(is.na(NABPFL), "TRUE", "FALSE"),
    NABNFL = NABNFL == "TRUE"
  ) %>%
  var_relabel(
    ADPBLPFL = "Post-baseline evaluable patients for ADA",
    ADAPFL = "Patients positive for ADA",
    NABPFL = "Patients positive for NAb",
    NABNFL = "Patients negative for NAb"
  )

Reproducibility

Timestamp

[1] "2025-07-05 17:51:41 UTC"

Session Info

─ Session info ───────────────────────────────────────────────────────────────
 setting  value
 version  R version 4.5.0 (2025-04-11)
 os       Ubuntu 24.04.2 LTS
 system   x86_64, linux-gnu
 ui       X11
 language (EN)
 collate  en_US.UTF-8
 ctype    en_US.UTF-8
 tz       Etc/UTC
 date     2025-07-05
 pandoc   3.7.0.2 @ /usr/bin/ (via rmarkdown)
 quarto   1.7.32 @ /usr/local/bin/quarto

─ Packages ───────────────────────────────────────────────────────────────────
 package           * version date (UTC) lib source
 backports           1.5.0   2024-05-23 [1] RSPM
 brio                1.1.5   2024-04-24 [1] RSPM
 broom               1.0.8   2025-03-28 [1] RSPM
 checkmate           2.3.2   2024-07-29 [1] RSPM
 cli                 3.6.5   2025-04-23 [1] RSPM
 codetools           0.2-20  2024-03-31 [2] CRAN (R 4.5.0)
 curl                6.4.0   2025-06-22 [1] RSPM
 dichromat           2.0-0.1 2022-05-02 [1] CRAN (R 4.5.0)
 digest              0.6.37  2024-08-19 [1] RSPM
 dplyr             * 1.1.4   2023-11-17 [1] RSPM
 evaluate            1.0.4   2025-06-18 [1] RSPM
 farver              2.1.2   2024-05-13 [1] RSPM
 fastmap             1.2.0   2024-05-15 [1] RSPM
 forcats             1.0.0   2023-01-29 [1] RSPM
 formatters        * 0.5.11  2025-04-09 [1] RSPM
 generics            0.1.4   2025-05-09 [1] RSPM
 ggplot2             3.5.2   2025-04-09 [1] RSPM
 glue                1.8.0   2024-09-30 [1] RSPM
 gtable              0.3.6   2024-10-25 [1] RSPM
 htmltools           0.5.8.1 2024-04-04 [1] RSPM
 htmlwidgets         1.6.4   2023-12-06 [1] RSPM
 jsonlite            2.0.0   2025-03-27 [1] RSPM
 knitr               1.50    2025-03-16 [1] RSPM
 lattice             0.22-7  2025-04-02 [2] CRAN (R 4.5.0)
 lifecycle           1.0.4   2023-11-07 [1] RSPM
 magrittr          * 2.0.3   2022-03-30 [1] RSPM
 Matrix              1.7-3   2025-03-11 [1] CRAN (R 4.5.0)
 nestcolor           0.1.3   2025-01-21 [1] RSPM
 pillar              1.11.0  2025-07-04 [1] RSPM
 pkgcache            2.2.4   2025-05-26 [1] RSPM
 pkgconfig           2.0.3   2019-09-22 [1] RSPM
 processx            3.8.6   2025-02-21 [1] RSPM
 ps                  1.9.1   2025-04-12 [1] RSPM
 purrr               1.0.4   2025-02-05 [1] RSPM
 R6                  2.6.1   2025-02-15 [1] RSPM
 random.cdisc.data   0.3.16  2024-10-10 [1] RSPM
 rbibutils           2.3     2024-10-04 [1] RSPM
 RColorBrewer        1.1-3   2022-04-03 [1] RSPM
 Rdpack              2.6.4   2025-04-09 [1] RSPM
 rlang               1.1.6   2025-04-11 [1] RSPM
 rmarkdown           2.29    2024-11-04 [1] RSPM
 rtables           * 0.6.13  2025-06-19 [1] RSPM
 scales              1.4.0   2025-04-24 [1] RSPM
 sessioninfo         1.2.3   2025-02-05 [1] any (@1.2.3)
 stringi             1.8.7   2025-03-27 [1] RSPM
 stringr             1.5.1   2023-11-14 [1] RSPM
 survival            3.8-3   2024-12-17 [2] CRAN (R 4.5.0)
 tern              * 0.9.9   2025-06-20 [1] RSPM
 testthat            3.2.3   2025-01-13 [1] RSPM
 tibble            * 3.3.0   2025-06-08 [1] RSPM
 tidyr               1.3.1   2024-01-24 [1] RSPM
 tidyselect          1.2.1   2024-03-11 [1] RSPM
 vctrs               0.6.5   2023-12-01 [1] RSPM
 withr               3.0.2   2024-10-28 [1] RSPM
 xfun                0.52    2025-04-02 [1] RSPM
 yaml                2.3.10  2024-07-26 [1] RSPM

 [1] /usr/local/lib/R/site-library
 [2] /usr/local/lib/R/library
 [3] /github/home/R/x86_64-pc-linux-gnu-library/4.5
 * ── Packages attached to the search path.

──────────────────────────────────────────────────────────────────────────────

.lock file

Download the .lock file and use renv::restore() on it to recreate environment used to generate this website.

Download

ADAT04A
AET01
Source Code
---
title: ADAT04B
subtitle: Baseline Prevalence and Incidence of NAbs
---

------------------------------------------------------------------------

{{< include ../../_utils/envir_hook.qmd >}}

```{r setup, echo = FALSE, warning = FALSE, message = FALSE}
library(tern)
library(dplyr)
library(tibble)

adsl <- random.cdisc.data::cadsl
adab <- random.cdisc.data::cadab

# Order needed for the columns is c(1, 3, 4, 2, 5)
reorder_facets <- function(splret, spl, fulldf, ...) {
  ord <- c(1, 3, 4, 2, 5)
  make_split_result(
    splret$values[ord],
    splret$datasplit[ord],
    splret$labels[ord]
  )
}

# Create a custom split function for adding the new columns (facets) and sorting them
custom_column_split_fun <- make_split_fun(
  post = list(
    add_combo_facet("all_X",
      label = "All Drug X",
      levels = c("A: Drug X", "C: Combination")
    ),
    add_combo_facet("all_pt",
      label = "All Patients",
      levels = c("A: Drug X", "B: Placebo", "C: Combination")
    ),
    reorder_facets
  )
)

# Ensure character variables are converted to factors and empty strings and NAs are explicit missing levels.
adsl <- df_explicit_na(adsl)

# Baseline Pts
adab_b <- df_explicit_na(adab) %>%
  filter(
    ABLFL == "Y",
    ADABLPFL == "Y",
    PARAM %in% c(
      "ADA interpreted per sample result",
      "NAB interpreted per sample result"
    )
  ) %>%
  select(-PARAMCD, -AVALC, -AVALU) %>%
  tidyr::pivot_wider(
    names_from = PARAM,
    values_from = AVAL
  ) %>%
  mutate(
    across(
      any_of(c(
        "ADA interpreted per sample result",
        "NAB interpreted per sample result"
      )),
      as.logical
    )
  ) %>%
  mutate(
    ADABLPFL = ADABLPFL == "Y",
    PADABLPFL = if (exists("ADA interpreted per sample result", where = .)) {
      `ADA interpreted per sample result` == "TRUE"
    } else {
      FALSE
    },
    PNABBLFL = if (exists("NAB interpreted per sample result", where = .)) {
      `NAB interpreted per sample result` == "TRUE"
    } else {
      FALSE
    },
    NNABBLFL = if (exists("NAB interpreted per sample result", where = .)) {
      `NAB interpreted per sample result` == "FALSE"
    } else {
      FALSE
    }
  ) %>%
  var_relabel(
    ADABLPFL = "Baseline evaluable patients for ADA",
    PADABLPFL = "Patients with a positive ADA sample at baseline",
    PNABBLFL = "Patients with a positive NAb sample at baseline",
    NNABBLFL = "Patients with no positive NAb sample at baseline"
  )

# Post-Baseline Evaluable Pts
adab_pb_ada <- df_explicit_na(adab) %>%
  filter(ADPBLPFL == "Y") %>%
  select(STUDYID, USUBJID, ARM, ACTARM, ADPBLPFL) %>%
  mutate(ADPBLPFL = ADPBLPFL == "Y") %>%
  distinct()

# Post-Baseline ADA Positive Pts
adab_pb_adap <- df_explicit_na(adab) %>%
  filter(
    ABLFL != "Y",
    PARAM == "ADA interpreted per sample result",
    AVALC == "POSITIVE"
  ) %>%
  mutate(ADAPFL = AVALC == "POSITIVE") %>%
  select(STUDYID, USUBJID, ARM, ACTARM, ADAPFL) %>%
  distinct()

# Post-Baseline NAb Positive Pts
adab_pb_nabp <- df_explicit_na(adab) %>%
  filter(
    ABLFL != "Y",
    PARAM == "NAb interpreted per sample result",
    AVALC == "POSITIVE"
  ) %>%
  mutate(NABPFL = AVALC == "POSITIVE") %>%
  select(STUDYID, USUBJID, ARM, ACTARM, NABPFL) %>%
  distinct()

# Post-Baseline NAb Negative Pts
adab_pb_nabn <- df_explicit_na(adab) %>%
  filter(
    ABLFL != "Y",
    PARAM == "NAb interpreted per sample result",
    AVALC == "NEGATIVE"
  ) %>%
  rename(NABNFL = AVALC) %>%
  select(STUDYID, USUBJID, ARM, ACTARM, NABNFL) %>%
  distinct()

mergecol <- c("STUDYID", "USUBJID", "ARM", "ACTARM")

adab_pb <- left_join(adab_pb_ada, adab_pb_adap, by = mergecol) %>%
  left_join(adab_pb_nabp, by = mergecol) %>%
  mutate(
    NABNFL = ifelse(is.na(NABPFL), "TRUE", "FALSE"),
    NABNFL = NABNFL == "TRUE"
  ) %>%
  var_relabel(
    ADPBLPFL = "Post-baseline evaluable patients for ADA",
    ADAPFL = "Patients positive for ADA",
    NABPFL = "Patients positive for NAb",
    NABNFL = "Patients negative for NAb"
  )
```

```{r include = FALSE}
webr_code_labels <- c("setup")
```

{{< include ../../_utils/webr_no_include.qmd >}}

## Output

:::: panel-tabset
## Standard Table

::: {.panel-tabset .nav-justified group="webr"}
## {{< fa regular file-lines sm fw >}} Preview

```{r variant1, test = list(result_v1 = "result")}
# Layout for Baseline Prevalence of NAbs
lyt_bl <- basic_table(show_colcounts = TRUE) %>%
  split_cols_by(
    "ACTARM",
    split_fun = custom_column_split_fun
  ) %>%
  count_patients_with_flags(
    "USUBJID",
    flag_variables = c("ADABLPFL", "PADABLPFL"),
    .stats = "count",
    var_labels = "Baseline Prevalence of NAbs",
    show_labels = "visible",
    table_names = "t1"
  ) %>%
  count_patients_with_flags(
    "USUBJID",
    flag_variables = "PNABBLFL",
    table_names = "t2",
    .indent_mods = 1L,
    show_labels = "hidden"
  ) %>%
  count_patients_with_flags(
    "USUBJID",
    flag_variables = "NNABBLFL",
    .stats = "count",
    table_names = "t3",
    .indent_mods = 1L,
    show_labels = "hidden"
  )

# Layout for incidence of NAbs
lyt_pb <- basic_table(show_colcounts = TRUE) %>%
  split_cols_by(
    "ACTARM",
    split_fun = custom_column_split_fun
  ) %>%
  count_patients_with_flags(
    "USUBJID",
    flag_variables = c("ADPBLPFL", "ADAPFL"),
    .stats = "count",
    var_labels = "Incidence of NAbs",
    show_labels = "visible",
    table_names = "tb1"
  ) %>%
  count_patients_with_flags(
    "USUBJID",
    flag_variables = "NABPFL",
    table_names = "tb2",
    .indent_mods = 1L,
    show_labels = "hidden"
  ) %>%
  count_patients_with_flags(
    "USUBJID",
    flag_variables = "NABNFL",
    .stats = "count",
    table_names = "tb3",
    .indent_mods = 1L,
    show_labels = "hidden"
  )

result_1 <- build_table(lyt_bl, df = adab_b, alt_counts_df = adsl)
result_2 <- build_table(lyt_pb, df = adab_pb, alt_counts_df = adsl)

# Combine tables.
result <- rbind(result_1, result_2)

main_title(result) <- paste(
  "Baseline Prevalence and Incidence of Neutralizing Antibodies (NAbs)"
)
subtitles(result) <- paste("Protocol:", unique(adab$PARCAT1)[1])
# nolint start: line_length.
main_footer(result) <- "NAb = Neutralizing Antibodies ADA = Anti-Drug Antibodies (is also referred to as ATA, or Anti-Therapeutic Antibodies) Baseline evaluable patient for ADA = a patient with an ADA assay result from a baseline sample(s) Baseline evaluable patient for NAb = a patient with a NAb assay result from a baseline sample(s) Post-baseline evaluable patient for ADA = a patient with an ADA assay result from at least one post-baseline sample Post-baseline evaluable patient for NAb = a patient with a NAb assay result from at least one post-baseline sample Number of patients positive for ADA = the number of post-baseline evaluable patients for ADA determined to have Treatment Emergent ADA during the study period.
Number of patients positive for NAb = the number (and percentage) of post-baseline evaluable patients for ADA determined to have at least one positive post-baseline NAb result during the study period. Number of patients negative for NAb = number of post-baseline evaluable patients with all negative post-baseline NAb results."
# nolint end: line_length.
result
```

```{r include = FALSE}
webr_code_labels <- c("variant1")
```

{{< include ../../_utils/webr.qmd >}}
:::

## Data Setup

```{r setup}
#| code-fold: show
```
::::

{{< include ../../_utils/save_results.qmd >}}

{{< include ../../repro.qmd >}}

Made with ❤️ by the NEST Team

  • Edit this page
  • Report an issue
Cookie Preferences