TLG Catalog - Stable
  • Stable
    • Dev
  1. Tables
  2. Lab Results
  3. LBT01
  • Introduction

  • Tables
    • ADA
      • ADAT01
      • ADAT02
      • ADAT03
      • ADAT04A
      • ADAT04B
    • Adverse Events
      • AET01
      • AET01_AESI
      • AET02
      • AET02_SMQ
      • AET03
      • AET04
      • AET04_PI
      • AET05
      • AET05_ALL
      • AET06
      • AET06_SMQ
      • AET07
      • AET09
      • AET09_SMQ
      • AET10
    • Concomitant Medications
      • CMT01
      • CMT01A
      • CMT01B
      • CMT02_PT
    • Deaths
      • DTHT01
    • Demography
      • DMT01
    • Disclosures
      • DISCLOSUREST01
      • EUDRAT01
      • EUDRAT02
    • Disposition
      • DST01
      • PDT01
      • PDT02
    • ECG
      • EGT01
      • EGT02
      • EGT03
      • EGT04
      • EGT05_QTCAT
    • Efficacy
      • AOVT01
      • AOVT02
      • AOVT03
      • CFBT01
      • CMHT01
      • COXT01
      • COXT02
      • DORT01
      • LGRT02
      • MMRMT01
      • ONCT05
      • RATET01
      • RBMIT01
      • RSPT01
      • TTET01
    • Exposure
      • EXT01
    • Lab Results
      • LBT01
      • LBT02
      • LBT03
      • LBT04
      • LBT05
      • LBT06
      • LBT07
      • LBT08
      • LBT09
      • LBT10
      • LBT10_BL
      • LBT11
      • LBT11_BL
      • LBT12
      • LBT12_BL
      • LBT13
      • LBT14
      • LBT15
    • Medical History
      • MHT01
    • Pharmacokinetic
      • PKCT01
      • PKPT02
      • PKPT03
      • PKPT04
      • PKPT05
      • PKPT06
      • PKPT07
      • PKPT08
      • PKPT11
    • Risk Management Plan
      • RMPT01
      • RMPT03
      • RMPT04
      • RMPT05
      • RMPT06
    • Safety
      • ENTXX
    • Vital Signs
      • VST01
      • VST02
  • Listings
    • ADA
      • ADAL02
    • Adverse Events
      • AEL01
      • AEL01_NOLLT
      • AEL02
      • AEL02_ED
      • AEL03
      • AEL04
    • Concomitant Medications
      • CML01
      • CML02A_GL
      • CML02B_GL
    • Development Safety Update Report
      • DSUR4
    • Disposition
      • DSL01
      • DSL02
    • ECG
      • EGL01
    • Efficacy
      • ONCL01
    • Exposure
      • EXL01
    • Lab Results
      • LBL01
      • LBL01_RLS
      • LBL02A
      • LBL02A_RLS
      • LBL02B
    • Medical History
      • MHL01
    • Pharmacokinetic
      • ADAL01
      • PKCL01
      • PKCL02
      • PKPL01
      • PKPL02
      • PKPL04
    • Vital Signs
      • VSL01
  • Graphs
    • Efficacy
      • FSTG01
      • FSTG02
      • KMG01
      • MMRMG01
      • MMRMG02
    • Other
      • BRG01
      • BWG01
      • CIG01
      • IPPG01
      • LTG01
      • MNG01
    • Pharmacokinetic
      • PKCG01
      • PKCG02
      • PKCG03
      • PKPG01
      • PKPG02
      • PKPG03
      • PKPG04
      • PKPG06

  • Appendix
    • Reproducibility

  • Index

On this page

  • Output
  • teal App
  • Reproducibility
    • Timestamp
    • Session Info
    • .lock file
  • Edit this page
  • Report an issue
  1. Tables
  2. Lab Results
  3. LBT01

LBT01

Laboratory Test Results and Change from Baseline by Visit


Output

  • Standard Table
  • Data Setup
  • Preview
  • Try this using WebR
Code
# Define the split function
split_fun <- drop_split_levels

afun <- function(x, .var, .spl_context, ...) {
  n_fun <- sum(!is.na(x), na.rm = TRUE)
  if (n_fun == 0) {
    mean_sd_fun <- c(NA, NA)
    median_fun <- NA
    min_max_fun <- c(NA, NA)
  } else {
    mean_sd_fun <- c(mean(x, na.rm = TRUE), sd(x, na.rm = TRUE))
    median_fun <- median(x, na.rm = TRUE)
    min_max_fun <- c(min(x), max(x))
  }
  is_chg <- .var == "CHG"
  is_baseline <- .spl_context$value[which(.spl_context$split == "AVISIT")] == "BASELINE"
  if (is_baseline && is_chg) n_fun <- mean_sd_fun <- median_fun <- min_max_fun <- NULL

  in_rows(
    "n" = n_fun,
    "Mean (SD)" = mean_sd_fun,
    "Median" = median_fun,
    "Min - Max" = min_max_fun,
    .formats = list("n" = "xx", "Mean (SD)" = "xx.xx (xx.xx)", "Median" = "xx.xx", "Min - Max" = "xx.xx - xx.xx"),
    .format_na_strs = list("n" = "NE", "Mean (SD)" = "NE (NE)", "Median" = "NE", "Min - Max" = "NE - NE")
  )
}

lyt <- basic_table(show_colcounts = TRUE) %>%
  split_cols_by("ACTARM") %>%
  split_rows_by("PARAM", split_fun = split_fun, label_pos = "topleft", split_label = obj_label(adlb_f$PARAM)) %>%
  split_rows_by("AVISIT", split_fun = split_fun, label_pos = "topleft", split_label = obj_label(adlb_f$AVISIT)) %>%
  split_cols_by_multivar(
    vars = c("AVAL", "CHG"),
    varlabels = c("Value at Visit", "Change from\nBaseline")
  ) %>%
  analyze_colvars(afun = afun)

result <- build_table(lyt, adlb_f)
result
                                                  A: Drug X                        B: Placebo                      C: Combination         
                                                         Change from                       Change from                       Change from  
Parameter                              Value at Visit      Baseline      Value at Visit      Baseline      Value at Visit      Baseline   
  Analysis Visit                          (N=804)          (N=804)          (N=670)          (N=670)          (N=792)          (N=792)    
——————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————
Alanine Aminotransferase Measurement                                                                                                      
  BASELINE                                                                                                                                
    n                                       134                               134                               132                       
    Mean (SD)                           17.74 (9.93)                      18.71 (9.83)                      19.46 (9.08)                  
    Median                                 17.46                             18.19                             18.97                      
    Min - Max                           0.00 - 44.06                      1.48 - 54.40                      0.57 - 39.81                  
  WEEK 1 DAY 8                                                                                                                            
    n                                       134              134               0                0               132              132      
    Mean (SD)                           16.75 (9.08)    -0.99 (13.49)       NE (NE)          NE (NE)        19.61 (9.27)     0.14 (12.85) 
    Median                                 16.02            -1.28              NE               NE             19.00             0.06     
    Min - Max                           0.05 - 36.30    -31.31 - 27.89      NE - NE          NE - NE        0.91 - 44.75    -32.45 - 38.85
  WEEK 2 DAY 15                                                                                                                           
    n                                       134              134              134              134              132              132      
    Mean (SD)                           17.82 (9.60)     0.08 (14.15)     18.82 (9.73)     0.11 (14.45)     16.55 (8.15)    -2.92 (12.64) 
    Median                                 15.92             0.28            17.96            -0.93            17.02            -1.11     
    Min - Max                           0.40 - 44.33    -32.89 - 40.55    0.18 - 44.34    -45.93 - 29.85    0.35 - 34.69    -28.36 - 23.98
  WEEK 3 DAY 22                                                                                                                           
    n                                       134              134              134              134              132              132      
    Mean (SD)                           18.37 (9.30)     0.63 (13.85)     17.65 (9.58)    -1.06 (13.58)     16.75 (9.54)    -2.71 (13.22) 
    Median                                 18.11             1.13            17.68            -0.49            15.10            -2.66     
    Min - Max                           0.59 - 41.73    -40.09 - 31.24    0.02 - 38.61    -46.30 - 31.38    0.48 - 39.23    -30.63 - 26.51
  WEEK 4 DAY 29                                                                                                                           
    n                                       134              134              134              134              132              132      
    Mean (SD)                          19.17 (10.95)     1.44 (15.39)    17.22 (10.64)    -1.48 (15.20)     17.92 (9.32)    -1.54 (12.63) 
    Median                                 17.41             0.88            15.88            -2.96            17.71            -1.53     
    Min - Max                           0.93 - 54.24    -32.93 - 46.98    0.39 - 47.96    -41.45 - 43.08    0.25 - 41.27    -30.33 - 27.99
  WEEK 5 DAY 36                                                                                                                           
    n                                       134              134              134              134              132              132      
    Mean (SD)                           19.22 (9.47)     1.48 (14.49)     18.01 (9.92)    -0.69 (14.65)     18.51 (9.43)    -0.95 (12.92) 
    Median                                 19.80             2.31            18.28             1.82            19.26            -2.48     
    Min - Max                           0.01 - 43.42    -40.08 - 30.07    0.11 - 40.64    -47.60 - 26.04    0.02 - 37.46    -29.78 - 25.00
Experimental use!

WebR is a tool allowing you to run R code in the web browser. Modify the code below and click run to see the results. Alternatively, copy the code and click here to open WebR in a new tab.

In order to generate the LBT01 standard tabulation, the adlb dataset may be pre-processed so as to discriminate baseline from follow-up visits.

Code
library(tern)
library(dplyr)

adsl <- random.cdisc.data::cadsl
adlb <- random.cdisc.data::cadlb

# Ensure character variables are converted to factors and empty strings and NAs are explicit missing levels.
adsl <- df_explicit_na(adsl)
adlb <- df_explicit_na(adlb) %>%
  filter(ANL01FL == "Y")

# For illustration purpose, the example focuses on "Alanine Aminotransferase
# Measurement" starting from baseline, while excluding visit at week 1 for
# subjects who were prescribed a placebo.
adlb_f <- adlb %>%
  dplyr::filter(
    PARAM == "Alanine Aminotransferase Measurement" &
      !(ACTARM == "B: Placebo" & AVISIT == "WEEK 1 DAY 8") &
      AVISIT != "SCREENING"
  )

teal App

  • Preview
  • Try this using shinylive
Code
library(teal.modules.clinical)

## Data reproducible code
data <- teal_data()
data <- within(data, {
  ADSL <- random.cdisc.data::cadsl
  ADLB <- random.cdisc.data::cadlb

  # Ensure character variables are converted to factors and empty strings and NAs are explicit missing levels.
  ADSL <- df_explicit_na(ADSL)
  ADLB <- df_explicit_na(ADLB)
})
datanames <- c("ADSL", "ADLB")
datanames(data) <- datanames
Warning: `datanames<-()` was deprecated in teal.data 0.7.0.
ℹ invalid to use `datanames()<-` or `names()<-` on an object of class
  `teal_data`. See ?names.teal_data
Code
join_keys(data) <- default_cdisc_join_keys[datanames]

## Reusable Configuration For Modules
ADSL <- data[["ADSL"]]
ADLB <- data[["ADLB"]]

## Setup App
app <- init(
  data = data,
  modules = modules(
    tm_t_summary_by(
      label = "Laboratory Test Results and Change from Baseline by Visit",
      dataname = "ADLB",
      arm_var = choices_selected(
        choices = variable_choices(ADSL, c("ARM", "ARMCD")),
        selected = "ARM"
      ),
      by_vars = choices_selected(
        choices = variable_choices(ADLB, c("PARAM", "AVISIT")),
        selected = c("AVISIT")
      ),
      summarize_vars = choices_selected(
        choices = variable_choices(ADLB, c("AVAL", "CHG")),
        selected = c("AVAL", "CHG")
      ),
      useNA = "ifany",
      paramcd = choices_selected(
        choices = value_choices(ADLB, "PARAMCD", "PARAM"),
        selected = "ALT"
      ),
      parallel_vars = TRUE
    )
  ),
  filter = teal_slices(teal_slice("ADLB", "AVAL", selected = NULL))
)

shinyApp(app$ui, app$server)

Experimental use!

shinylive allow you to modify to run shiny application entirely in the web browser. Modify the code below and click re-run the app to see the results. The performance is slighly worse and some of the features (e.g. downloading) might not work at all.

#| '!! shinylive warning !!': |
#|   shinylive does not work in self-contained HTML documents.
#|   Please set `embed-resources: false` in your metadata.
#| standalone: true
#| viewerHeight: 800
#| editorHeight: 200
#| components: [viewer, editor]
#| layout: vertical

# -- WEBR HELPERS --
options(webr_pkg_repos = c("r-universe" = "https://insightsengineering.r-universe.dev", getOption("webr_pkg_repos")))

# -- APP CODE --
library(teal.modules.clinical)

## Data reproducible code
data <- teal_data()
data <- within(data, {
  ADSL <- random.cdisc.data::cadsl
  ADLB <- random.cdisc.data::cadlb

  # Ensure character variables are converted to factors and empty strings and NAs are explicit missing levels.
  ADSL <- df_explicit_na(ADSL)
  ADLB <- df_explicit_na(ADLB)
})
datanames <- c("ADSL", "ADLB")
datanames(data) <- datanames
join_keys(data) <- default_cdisc_join_keys[datanames]

## Reusable Configuration For Modules
ADSL <- data[["ADSL"]]
ADLB <- data[["ADLB"]]

## Setup App
app <- init(
  data = data,
  modules = modules(
    tm_t_summary_by(
      label = "Laboratory Test Results and Change from Baseline by Visit",
      dataname = "ADLB",
      arm_var = choices_selected(
        choices = variable_choices(ADSL, c("ARM", "ARMCD")),
        selected = "ARM"
      ),
      by_vars = choices_selected(
        choices = variable_choices(ADLB, c("PARAM", "AVISIT")),
        selected = c("AVISIT")
      ),
      summarize_vars = choices_selected(
        choices = variable_choices(ADLB, c("AVAL", "CHG")),
        selected = c("AVAL", "CHG")
      ),
      useNA = "ifany",
      paramcd = choices_selected(
        choices = value_choices(ADLB, "PARAMCD", "PARAM"),
        selected = "ALT"
      ),
      parallel_vars = TRUE
    )
  ),
  filter = teal_slices(teal_slice("ADLB", "AVAL", selected = NULL))
)

shinyApp(app$ui, app$server)

Reproducibility

Timestamp

[1] "2025-07-05 17:45:48 UTC"

Session Info

─ Session info ───────────────────────────────────────────────────────────────
 setting  value
 version  R version 4.5.0 (2025-04-11)
 os       Ubuntu 24.04.2 LTS
 system   x86_64, linux-gnu
 ui       X11
 language (EN)
 collate  en_US.UTF-8
 ctype    en_US.UTF-8
 tz       Etc/UTC
 date     2025-07-05
 pandoc   3.7.0.2 @ /usr/bin/ (via rmarkdown)
 quarto   1.7.32 @ /usr/local/bin/quarto

─ Packages ───────────────────────────────────────────────────────────────────
 package               * version  date (UTC) lib source
 backports               1.5.0    2024-05-23 [1] RSPM
 brio                    1.1.5    2024-04-24 [1] RSPM
 broom                   1.0.8    2025-03-28 [1] RSPM
 bslib                   0.9.0    2025-01-30 [1] RSPM
 cachem                  1.1.0    2024-05-16 [1] RSPM
 callr                   3.7.6    2024-03-25 [1] RSPM
 checkmate               2.3.2    2024-07-29 [1] RSPM
 chromote                0.5.1    2025-04-24 [1] RSPM
 cli                     3.6.5    2025-04-23 [1] RSPM
 coda                    0.19-4.1 2024-01-31 [1] CRAN (R 4.5.0)
 codetools               0.2-20   2024-03-31 [2] CRAN (R 4.5.0)
 curl                    6.4.0    2025-06-22 [1] RSPM
 data.table              1.17.6   2025-06-17 [1] RSPM
 dichromat               2.0-0.1  2022-05-02 [1] CRAN (R 4.5.0)
 digest                  0.6.37   2024-08-19 [1] RSPM
 dplyr                 * 1.1.4    2023-11-17 [1] RSPM
 emmeans                 1.11.1   2025-05-04 [1] RSPM
 estimability            1.5.1    2024-05-12 [1] RSPM
 evaluate                1.0.4    2025-06-18 [1] RSPM
 farver                  2.1.2    2024-05-13 [1] RSPM
 fastmap                 1.2.0    2024-05-15 [1] RSPM
 fontawesome             0.5.3    2024-11-16 [1] RSPM
 forcats                 1.0.0    2023-01-29 [1] RSPM
 formatR                 1.14     2023-01-17 [1] CRAN (R 4.5.0)
 formatters            * 0.5.11   2025-04-09 [1] RSPM
 geepack                 1.3.12   2024-09-23 [1] RSPM
 generics                0.1.4    2025-05-09 [1] RSPM
 ggplot2                 3.5.2    2025-04-09 [1] RSPM
 glue                    1.8.0    2024-09-30 [1] RSPM
 gtable                  0.3.6    2024-10-25 [1] RSPM
 htmltools               0.5.8.1  2024-04-04 [1] RSPM
 htmlwidgets             1.6.4    2023-12-06 [1] RSPM
 httpuv                  1.6.16   2025-04-16 [1] RSPM
 httr                    1.4.7    2023-08-15 [1] RSPM
 jquerylib               0.1.4    2021-04-26 [1] RSPM
 jsonlite                2.0.0    2025-03-27 [1] RSPM
 knitr                   1.50     2025-03-16 [1] RSPM
 later                   1.4.2    2025-04-08 [1] RSPM
 lattice                 0.22-7   2025-04-02 [2] CRAN (R 4.5.0)
 lazyeval                0.2.2    2019-03-15 [1] RSPM
 lifecycle               1.0.4    2023-11-07 [1] RSPM
 logger                  0.4.0    2024-10-22 [1] RSPM
 magrittr              * 2.0.3    2022-03-30 [1] RSPM
 MASS                    7.3-65   2025-02-28 [2] CRAN (R 4.5.0)
 Matrix                  1.7-3    2025-03-11 [1] CRAN (R 4.5.0)
 memoise                 2.0.1    2021-11-26 [1] RSPM
 mime                    0.13     2025-03-17 [1] RSPM
 multcomp                1.4-28   2025-01-29 [1] RSPM
 mvtnorm                 1.3-3    2025-01-10 [1] RSPM
 nestcolor               0.1.3    2025-01-21 [1] RSPM
 nlme                    3.1-168  2025-03-31 [2] CRAN (R 4.5.0)
 pillar                  1.11.0   2025-07-04 [1] RSPM
 pkgcache                2.2.4    2025-05-26 [1] RSPM
 pkgconfig               2.0.3    2019-09-22 [1] RSPM
 plotly                  4.11.0   2025-06-19 [1] RSPM
 processx                3.8.6    2025-02-21 [1] RSPM
 promises                1.3.3    2025-05-29 [1] RSPM
 ps                      1.9.1    2025-04-12 [1] RSPM
 purrr                   1.0.4    2025-02-05 [1] RSPM
 R6                      2.6.1    2025-02-15 [1] RSPM
 random.cdisc.data       0.3.16   2024-10-10 [1] RSPM
 rbibutils               2.3      2024-10-04 [1] RSPM
 RColorBrewer            1.1-3    2022-04-03 [1] RSPM
 Rcpp                    1.1.0    2025-07-02 [1] RSPM
 Rdpack                  2.6.4    2025-04-09 [1] RSPM
 rlang                   1.1.6    2025-04-11 [1] RSPM
 rmarkdown               2.29     2024-11-04 [1] RSPM
 rtables               * 0.6.13   2025-06-19 [1] RSPM
 sandwich                3.1-1    2024-09-15 [1] RSPM
 sass                    0.4.10   2025-04-11 [1] RSPM
 scales                  1.4.0    2025-04-24 [1] RSPM
 sessioninfo             1.2.3    2025-02-05 [1] any (@1.2.3)
 shiny                 * 1.11.1   2025-07-03 [1] RSPM
 shinycssloaders         1.1.0    2024-07-30 [1] RSPM
 shinyjs                 2.1.0    2021-12-23 [1] RSPM
 shinyvalidate           0.1.3    2023-10-04 [1] RSPM
 shinyWidgets            0.9.0    2025-02-21 [1] RSPM
 stringi                 1.8.7    2025-03-27 [1] RSPM
 stringr                 1.5.1    2023-11-14 [1] RSPM
 survival                3.8-3    2024-12-17 [2] CRAN (R 4.5.0)
 teal                  * 0.16.0   2025-02-23 [1] RSPM
 teal.code             * 0.6.1    2025-02-14 [1] RSPM
 teal.data             * 0.7.0    2025-01-28 [1] RSPM
 teal.logger             0.3.2    2025-02-14 [1] RSPM
 teal.modules.clinical * 0.10.0   2025-02-28 [1] RSPM
 teal.reporter           0.4.0    2025-01-24 [1] RSPM
 teal.slice            * 0.6.0    2025-02-03 [1] RSPM
 teal.transform        * 0.6.0    2025-02-12 [1] RSPM
 teal.widgets            0.4.3    2025-01-31 [1] RSPM
 tern                  * 0.9.9    2025-06-20 [1] RSPM
 tern.gee                0.1.5    2024-08-23 [1] RSPM
 testthat                3.2.3    2025-01-13 [1] RSPM
 TH.data                 1.1-3    2025-01-17 [1] RSPM
 tibble                  3.3.0    2025-06-08 [1] RSPM
 tidyr                   1.3.1    2024-01-24 [1] RSPM
 tidyselect              1.2.1    2024-03-11 [1] RSPM
 vctrs                   0.6.5    2023-12-01 [1] RSPM
 viridisLite             0.4.2    2023-05-02 [1] RSPM
 webshot                 0.5.5    2023-06-26 [1] CRAN (R 4.5.0)
 webshot2                0.1.2    2025-04-23 [1] RSPM
 websocket               1.4.4    2025-04-10 [1] RSPM
 withr                   3.0.2    2024-10-28 [1] RSPM
 xfun                    0.52     2025-04-02 [1] RSPM
 xtable                  1.8-4    2019-04-21 [1] RSPM
 yaml                    2.3.10   2024-07-26 [1] RSPM
 zoo                     1.8-14   2025-04-10 [1] RSPM

 [1] /usr/local/lib/R/site-library
 [2] /usr/local/lib/R/library
 [3] /github/home/R/x86_64-pc-linux-gnu-library/4.5
 * ── Packages attached to the search path.

──────────────────────────────────────────────────────────────────────────────

.lock file

Download the .lock file and use renv::restore() on it to recreate environment used to generate this website.

Download

EXT01
LBT02
Source Code
---
title: LBT01
subtitle: Laboratory Test Results and Change from Baseline by Visit
---

------------------------------------------------------------------------

{{< include ../../_utils/envir_hook.qmd >}}

```{r setup, echo = FALSE, warning = FALSE, message = FALSE}
library(tern)
library(dplyr)

adsl <- random.cdisc.data::cadsl
adlb <- random.cdisc.data::cadlb

# Ensure character variables are converted to factors and empty strings and NAs are explicit missing levels.
adsl <- df_explicit_na(adsl)
adlb <- df_explicit_na(adlb) %>%
  filter(ANL01FL == "Y")

# For illustration purpose, the example focuses on "Alanine Aminotransferase
# Measurement" starting from baseline, while excluding visit at week 1 for
# subjects who were prescribed a placebo.
adlb_f <- adlb %>%
  dplyr::filter(
    PARAM == "Alanine Aminotransferase Measurement" &
      !(ACTARM == "B: Placebo" & AVISIT == "WEEK 1 DAY 8") &
      AVISIT != "SCREENING"
  )
```

```{r include = FALSE}
webr_code_labels <- c("setup")
```

{{< include ../../_utils/webr_no_include.qmd >}}

## Output

:::: panel-tabset
## Standard Table

::: {.panel-tabset .nav-justified group="webr"}
## {{< fa regular file-lines sm fw >}} Preview

```{r variant1, test = list(result_v1 = "result")}
# Define the split function
split_fun <- drop_split_levels

afun <- function(x, .var, .spl_context, ...) {
  n_fun <- sum(!is.na(x), na.rm = TRUE)
  if (n_fun == 0) {
    mean_sd_fun <- c(NA, NA)
    median_fun <- NA
    min_max_fun <- c(NA, NA)
  } else {
    mean_sd_fun <- c(mean(x, na.rm = TRUE), sd(x, na.rm = TRUE))
    median_fun <- median(x, na.rm = TRUE)
    min_max_fun <- c(min(x), max(x))
  }
  is_chg <- .var == "CHG"
  is_baseline <- .spl_context$value[which(.spl_context$split == "AVISIT")] == "BASELINE"
  if (is_baseline && is_chg) n_fun <- mean_sd_fun <- median_fun <- min_max_fun <- NULL

  in_rows(
    "n" = n_fun,
    "Mean (SD)" = mean_sd_fun,
    "Median" = median_fun,
    "Min - Max" = min_max_fun,
    .formats = list("n" = "xx", "Mean (SD)" = "xx.xx (xx.xx)", "Median" = "xx.xx", "Min - Max" = "xx.xx - xx.xx"),
    .format_na_strs = list("n" = "NE", "Mean (SD)" = "NE (NE)", "Median" = "NE", "Min - Max" = "NE - NE")
  )
}

lyt <- basic_table(show_colcounts = TRUE) %>%
  split_cols_by("ACTARM") %>%
  split_rows_by("PARAM", split_fun = split_fun, label_pos = "topleft", split_label = obj_label(adlb_f$PARAM)) %>%
  split_rows_by("AVISIT", split_fun = split_fun, label_pos = "topleft", split_label = obj_label(adlb_f$AVISIT)) %>%
  split_cols_by_multivar(
    vars = c("AVAL", "CHG"),
    varlabels = c("Value at Visit", "Change from\nBaseline")
  ) %>%
  analyze_colvars(afun = afun)

result <- build_table(lyt, adlb_f)
result
```

```{r include = FALSE}
webr_code_labels <- c("variant1")
```

{{< include ../../_utils/webr.qmd >}}
:::

## Data Setup

In order to generate the `LBT01` standard tabulation, the `adlb` dataset may be pre-processed so as to discriminate baseline from follow-up visits.

```{r setup}
#| code-fold: show
```
::::

{{< include ../../_utils/save_results.qmd >}}

## `teal` App

::: {.panel-tabset .nav-justified}
## {{< fa regular file-lines fa-sm fa-fw >}} Preview

```{r teal, opts.label = c("skip_if_testing", "app")}
library(teal.modules.clinical)

## Data reproducible code
data <- teal_data()
data <- within(data, {
  ADSL <- random.cdisc.data::cadsl
  ADLB <- random.cdisc.data::cadlb

  # Ensure character variables are converted to factors and empty strings and NAs are explicit missing levels.
  ADSL <- df_explicit_na(ADSL)
  ADLB <- df_explicit_na(ADLB)
})
datanames <- c("ADSL", "ADLB")
datanames(data) <- datanames
join_keys(data) <- default_cdisc_join_keys[datanames]

## Reusable Configuration For Modules
ADSL <- data[["ADSL"]]
ADLB <- data[["ADLB"]]

## Setup App
app <- init(
  data = data,
  modules = modules(
    tm_t_summary_by(
      label = "Laboratory Test Results and Change from Baseline by Visit",
      dataname = "ADLB",
      arm_var = choices_selected(
        choices = variable_choices(ADSL, c("ARM", "ARMCD")),
        selected = "ARM"
      ),
      by_vars = choices_selected(
        choices = variable_choices(ADLB, c("PARAM", "AVISIT")),
        selected = c("AVISIT")
      ),
      summarize_vars = choices_selected(
        choices = variable_choices(ADLB, c("AVAL", "CHG")),
        selected = c("AVAL", "CHG")
      ),
      useNA = "ifany",
      paramcd = choices_selected(
        choices = value_choices(ADLB, "PARAMCD", "PARAM"),
        selected = "ALT"
      ),
      parallel_vars = TRUE
    )
  ),
  filter = teal_slices(teal_slice("ADLB", "AVAL", selected = NULL))
)

shinyApp(app$ui, app$server)
```

{{< include ../../_utils/shinylive.qmd >}}
:::

{{< include ../../repro.qmd >}}

Made with ❤️ by the NEST Team

  • Edit this page
  • Report an issue
Cookie Preferences