Code
anl_01 <- adqs %>%
filter(PARAMCD == "FKSI-FWB" & AVISIT == "WEEK 1 DAY 8") %>%
mutate(is_rsp = PCHG > 15) %>%
mutate(ARM = relevel(ARM, ref = "A: Drug X")) %>%
var_relabel(ARM = "Description of Planned Arm") %>%
mutate(strata = interaction(STRATA1, STRATA2, drop = TRUE))
lyt_01 <- basic_table(show_colcounts = TRUE) %>%
split_cols_by(var = "ARM", ref_group = "A: Drug X") %>%
estimate_proportion(vars = "is_rsp", table_names = "est_prop") %>%
estimate_proportion_diff(
var_labels = "Unstratified Analysis",
vars = "is_rsp",
show_labels = "visible",
table_names = "est_prop_diff"
) %>%
test_proportion_diff(vars = "is_rsp", table_names = "test_prop") %>%
estimate_odds_ratio(vars = "is_rsp", table_names = "est_or") %>%
estimate_proportion_diff(
var_labels = "Stratified Analysis",
vars = "is_rsp",
show_labels = "visible",
method = "cmh",
variables = list(strata = "strata"),
table_names = "est_prop_diff_strat"
) %>%
test_proportion_diff(
vars = "is_rsp",
method = "cmh",
variables = list(strata = "strata"),
table_names = "test_prop_strat"
) %>%
estimate_odds_ratio(
vars = "is_rsp",
variables = list(strata = "strata", arm = "ARM"),
table_names = "est_or_strat"
)
result <- build_table(
lyt = lyt_01,
df = anl_01,
alt_counts_df = adsl
)
result
A: Drug X B: Placebo C: Combination
(N=134) (N=134) (N=132)
—————————————————————————————————————————————————————————————————————————————————————————————————
Responders 49 (36.6%) 51 (38.1%) 47 (35.6%)
95% CI (Wald, with correction) (28.0, 45.1) (29.5, 46.7) (27.1, 44.2)
Unstratified Analysis
Difference in Response rate (%) 1.5 -1.0
95% CI (Wald, with correction) (-10.8, 13.8) (-13.3, 11.3)
p-value (Chi-Squared Test) 0.8006 0.8704
Odds Ratio (95% CI) 1.07 (0.65 - 1.75) 0.96 (0.58 - 1.58)
Stratified Analysis
Difference in Response rate (%) 2.8 -1.5
95% CI (CMH, without correction) (-8.2, 13.8) (-13.0, 9.9)
p-value (Cochran-Mantel-Haenszel Test) 0.6397 0.7952
Odds Ratio (95% CI) 1.12 (0.68 - 1.83) 0.99 (0.60 - 1.64)