TLG Catalog - Stable
  • Stable
    • Dev
  1. Graphs
  2. Pharmacokinetic
  3. PKPG01
  • Introduction

  • Tables
    • ADA
      • ADAT01
      • ADAT02
      • ADAT03
      • ADAT04A
      • ADAT04B
    • Adverse Events
      • AET01
      • AET01_AESI
      • AET02
      • AET02_SMQ
      • AET03
      • AET04
      • AET04_PI
      • AET05
      • AET05_ALL
      • AET06
      • AET06_SMQ
      • AET07
      • AET09
      • AET09_SMQ
      • AET10
    • Concomitant Medications
      • CMT01
      • CMT01A
      • CMT01B
      • CMT02_PT
    • Deaths
      • DTHT01
    • Demography
      • DMT01
    • Disclosures
      • DISCLOSUREST01
      • EUDRAT01
      • EUDRAT02
    • Disposition
      • DST01
      • PDT01
      • PDT02
    • ECG
      • EGT01
      • EGT02
      • EGT03
      • EGT04
      • EGT05_QTCAT
    • Efficacy
      • AOVT01
      • AOVT02
      • AOVT03
      • CFBT01
      • CMHT01
      • COXT01
      • COXT02
      • DORT01
      • LGRT02
      • MMRMT01
      • ONCT05
      • RATET01
      • RBMIT01
      • RSPT01
      • TTET01
    • Exposure
      • EXT01
    • Lab Results
      • LBT01
      • LBT02
      • LBT03
      • LBT04
      • LBT05
      • LBT06
      • LBT07
      • LBT08
      • LBT09
      • LBT10
      • LBT10_BL
      • LBT11
      • LBT11_BL
      • LBT12
      • LBT12_BL
      • LBT13
      • LBT14
      • LBT15
    • Medical History
      • MHT01
    • Pharmacokinetic
      • PKCT01
      • PKPT02
      • PKPT03
      • PKPT04
      • PKPT05
      • PKPT06
      • PKPT07
      • PKPT08
      • PKPT11
    • Risk Management Plan
      • RMPT01
      • RMPT03
      • RMPT04
      • RMPT05
      • RMPT06
    • Safety
      • ENTXX
    • Vital Signs
      • VST01
      • VST02
  • Listings
    • ADA
      • ADAL02
    • Adverse Events
      • AEL01
      • AEL01_NOLLT
      • AEL02
      • AEL02_ED
      • AEL03
      • AEL04
    • Concomitant Medications
      • CML01
      • CML02A_GL
      • CML02B_GL
    • Development Safety Update Report
      • DSUR4
    • Disposition
      • DSL01
      • DSL02
    • ECG
      • EGL01
    • Efficacy
      • ONCL01
    • Exposure
      • EXL01
    • Lab Results
      • LBL01
      • LBL01_RLS
      • LBL02A
      • LBL02A_RLS
      • LBL02B
    • Medical History
      • MHL01
    • Pharmacokinetic
      • ADAL01
      • PKCL01
      • PKCL02
      • PKPL01
      • PKPL02
      • PKPL04
    • Vital Signs
      • VSL01
  • Graphs
    • Efficacy
      • FSTG01
      • FSTG02
      • KMG01
      • MMRMG01
      • MMRMG02
    • Other
      • BRG01
      • BWG01
      • CIG01
      • IPPG01
      • LTG01
      • MNG01
    • Pharmacokinetic
      • PKCG01
      • PKCG02
      • PKCG03
      • PKPG01
      • PKPG02
      • PKPG03
      • PKPG04
      • PKPG06

  • Appendix
    • Reproducibility

  • Index

On this page

  • Output
  • Reproducibility
    • Timestamp
    • Session Info
    • .lock file
  • Edit this page
  • Report an issue
  1. Graphs
  2. Pharmacokinetic
  3. PKPG01

PKPG01

Plot of Mean Cumulative Percentage (%) of Recovered Drug in Urine


Output

  • Plot with Two Cohorts
  • Plot with Six Cohorts
  • Data Setup
  • Preview
  • Try this using WebR
Code
use_title <- "Plot of Mean (+/- SD) Cummulative Percentage (%) of Recovered Drug in Urine \nby Analyte, Visit: PK Evaluable Patients" 
use_subtitle <- "Analyte: Plasma Drug X \nVisit: CYCLE 1 DAY 1 \nPK Parameter:"
use_footnote <- "Program: \nOutput:"

separation_between_barplots <- 1.5

result <- g_lineplot(
  df = adpp,
  variables = control_lineplot_vars(
    x = "Time",
    y = "AVAL",
    group_var = "ARM",
    paramcd = "PARAM1",
    y_unit = "AVALU"
  ),
  alt_counts_df = adpp,
  y_lab = "Cummulative Percentage",
  x_lab = "Time (hours)",
  y_lab_add_paramcd = FALSE,
  y_lab_add_unit = TRUE,
  interval = "mean_sdi",
  whiskers = c("mean_sdi_lwr", "mean_sdi_upr"),
  title = use_title,
  subtitle = use_subtitle,
  caption = use_footnote,
  ggtheme = theme_nest(),
  position = ggplot2::position_dodge(width = 2)
)

plot <- result + theme(plot.caption = element_text(hjust = 0)) +
  scale_x_continuous(breaks = c(12, 24))
Scale for x is already present.
Adding another scale for x, which will replace the existing scale.
Code
plot

Experimental use!

WebR is a tool allowing you to run R code in the web browser. Modify the code below and click run to see the results. Alternatively, copy the code and click here to open WebR in a new tab.

  • Preview
  • Try this using WebR

In this case we need to process the data further by artificially adding more random rows. Of course this step is not necessary in the case that data already has more cohorts.

Code
adpp_hck <- adpp %>%
  mutate(AVAL + 1 * rnorm(nrow(adpp), mean = 1, sd = 1)) %>%
  mutate(ARM = as.factor(sample(
    c(
      "D: Drug D",
      "E: Drug E",
      "F: Drug F",
      "G: Drug G"
    ),
    nrow(adpp),
    replace = TRUE,
    prob = c(0.4, 0.3, 0.2, 0.1)
  )))

adpp <- bind_rows(adpp, adpp_hck)

use_title <- "Plot of Mean (+/- SD) Cummulative Percentage (%) of Recovered Drug in Urine \nby Analyte, Visit: PK Evaluable Patients" 
use_subtitle <- "Analyte: Plasma Drug X \nVisit: CYCLE 1 DAY 1 \nPK Parameter:"
use_footnote <- "Program: \nOutput:"

separation_between_barplots <- 1.5

result <- g_lineplot(
  df = adpp,
  variables = control_lineplot_vars(
    x = "Time",
    y = "AVAL",
    group_var = "ARM",
    paramcd = "PARAM1",
    y_unit = "AVALU"
  ),
  alt_counts_df = adpp,
  y_lab = "Cummulative Percentage",
  x_lab = "Time (hours)",
  y_lab_add_paramcd = FALSE,
  y_lab_add_unit = TRUE,
  interval = "mean_sdi",
  whiskers = c("mean_sdi_lwr", "mean_sdi_upr"),
  title = use_title,
  subtitle = use_subtitle,
  caption = use_footnote,
  ggtheme = theme_nest(),
  position = ggplot2::position_dodge(width = 2)
)

plot <- result + theme(plot.caption = element_text(hjust = 0)) +
  scale_x_continuous(breaks = c(12, 24))
Scale for x is already present.
Adding another scale for x, which will replace the existing scale.
Code
plot

Experimental use!

WebR is a tool allowing you to run R code in the web browser. Modify the code below and click run to see the results. Alternatively, copy the code and click here to open WebR in a new tab.

Code
library(tern)
library(dplyr)
library(ggplot2)
library(nestcolor)
set.seed(123)

# loading in the data
adpp <- random.cdisc.data::cadpp

# filtering the rows for specific data entries
adpp <- adpp %>%
  filter(PARAMCD == "RCPCINT", AVISIT == "CYCLE 1 DAY 1", PPCAT == "Plasma Drug X")

# adding or modifying specific columns
adpp <- adpp %>%
  mutate(ARM = as.factor(TRT01A)) %>%
  mutate(PARAM1 = "Fe") %>% # re-format PK parameter name
  mutate(Time = as.numeric(gsub("PT*|\\.|H$", "", PPENINT))) %>%
  droplevels() %>%
  df_explicit_na()

# in cases where the cohorts are numeric it is possible to rename them
levels(adpp$ARM) <- c(
  "A: Drug X",
  "C: Combination"
)

Reproducibility

Timestamp

[1] "2025-07-05 18:01:01 UTC"

Session Info

─ Session info ───────────────────────────────────────────────────────────────
 setting  value
 version  R version 4.5.0 (2025-04-11)
 os       Ubuntu 24.04.2 LTS
 system   x86_64, linux-gnu
 ui       X11
 language (EN)
 collate  en_US.UTF-8
 ctype    en_US.UTF-8
 tz       Etc/UTC
 date     2025-07-05
 pandoc   3.7.0.2 @ /usr/bin/ (via rmarkdown)
 quarto   1.7.32 @ /usr/local/bin/quarto

─ Packages ───────────────────────────────────────────────────────────────────
 package           * version date (UTC) lib source
 backports           1.5.0   2024-05-23 [1] RSPM
 brio                1.1.5   2024-04-24 [1] RSPM
 broom               1.0.8   2025-03-28 [1] RSPM
 checkmate           2.3.2   2024-07-29 [1] RSPM
 cli                 3.6.5   2025-04-23 [1] RSPM
 codetools           0.2-20  2024-03-31 [2] CRAN (R 4.5.0)
 curl                6.4.0   2025-06-22 [1] RSPM
 dichromat           2.0-0.1 2022-05-02 [1] CRAN (R 4.5.0)
 digest              0.6.37  2024-08-19 [1] RSPM
 dplyr             * 1.1.4   2023-11-17 [1] RSPM
 evaluate            1.0.4   2025-06-18 [1] RSPM
 farver              2.1.2   2024-05-13 [1] RSPM
 fastmap             1.2.0   2024-05-15 [1] RSPM
 forcats             1.0.0   2023-01-29 [1] RSPM
 formatters        * 0.5.11  2025-04-09 [1] RSPM
 generics            0.1.4   2025-05-09 [1] RSPM
 ggplot2           * 3.5.2   2025-04-09 [1] RSPM
 glue                1.8.0   2024-09-30 [1] RSPM
 gtable              0.3.6   2024-10-25 [1] RSPM
 htmltools           0.5.8.1 2024-04-04 [1] RSPM
 htmlwidgets         1.6.4   2023-12-06 [1] RSPM
 jsonlite            2.0.0   2025-03-27 [1] RSPM
 knitr               1.50    2025-03-16 [1] RSPM
 labeling            0.4.3   2023-08-29 [1] RSPM
 lattice             0.22-7  2025-04-02 [2] CRAN (R 4.5.0)
 lifecycle           1.0.4   2023-11-07 [1] RSPM
 magrittr          * 2.0.3   2022-03-30 [1] RSPM
 Matrix              1.7-3   2025-03-11 [1] CRAN (R 4.5.0)
 nestcolor         * 0.1.3   2025-01-21 [1] RSPM
 pillar              1.11.0  2025-07-04 [1] RSPM
 pkgcache            2.2.4   2025-05-26 [1] RSPM
 pkgconfig           2.0.3   2019-09-22 [1] RSPM
 processx            3.8.6   2025-02-21 [1] RSPM
 ps                  1.9.1   2025-04-12 [1] RSPM
 purrr               1.0.4   2025-02-05 [1] RSPM
 R6                  2.6.1   2025-02-15 [1] RSPM
 random.cdisc.data   0.3.16  2024-10-10 [1] RSPM
 rbibutils           2.3     2024-10-04 [1] RSPM
 RColorBrewer        1.1-3   2022-04-03 [1] RSPM
 Rdpack              2.6.4   2025-04-09 [1] RSPM
 rlang               1.1.6   2025-04-11 [1] RSPM
 rmarkdown           2.29    2024-11-04 [1] RSPM
 rtables           * 0.6.13  2025-06-19 [1] RSPM
 scales              1.4.0   2025-04-24 [1] RSPM
 sessioninfo         1.2.3   2025-02-05 [1] any (@1.2.3)
 stringi             1.8.7   2025-03-27 [1] RSPM
 stringr             1.5.1   2023-11-14 [1] RSPM
 survival            3.8-3   2024-12-17 [2] CRAN (R 4.5.0)
 tern              * 0.9.9   2025-06-20 [1] RSPM
 testthat            3.2.3   2025-01-13 [1] RSPM
 tibble              3.3.0   2025-06-08 [1] RSPM
 tidyr               1.3.1   2024-01-24 [1] RSPM
 tidyselect          1.2.1   2024-03-11 [1] RSPM
 vctrs               0.6.5   2023-12-01 [1] RSPM
 withr               3.0.2   2024-10-28 [1] RSPM
 xfun                0.52    2025-04-02 [1] RSPM
 yaml                2.3.10  2024-07-26 [1] RSPM

 [1] /usr/local/lib/R/site-library
 [2] /usr/local/lib/R/library
 [3] /github/home/R/x86_64-pc-linux-gnu-library/4.5
 * ── Packages attached to the search path.

──────────────────────────────────────────────────────────────────────────────

.lock file

Download the .lock file and use renv::restore() on it to recreate environment used to generate this website.

Download

PKCG03
PKPG02
Source Code
---
title: PKPG01
subtitle: Plot of Mean Cumulative Percentage (%) of Recovered Drug in Urine
---

------------------------------------------------------------------------

{{< include ../../_utils/envir_hook.qmd >}}

```{r setup, echo = FALSE, warning = FALSE, message = FALSE}
library(tern)
library(dplyr)
library(ggplot2)
library(nestcolor)
set.seed(123)

# loading in the data
adpp <- random.cdisc.data::cadpp

# filtering the rows for specific data entries
adpp <- adpp %>%
  filter(PARAMCD == "RCPCINT", AVISIT == "CYCLE 1 DAY 1", PPCAT == "Plasma Drug X")

# adding or modifying specific columns
adpp <- adpp %>%
  mutate(ARM = as.factor(TRT01A)) %>%
  mutate(PARAM1 = "Fe") %>% # re-format PK parameter name
  mutate(Time = as.numeric(gsub("PT*|\\.|H$", "", PPENINT))) %>%
  droplevels() %>%
  df_explicit_na()

# in cases where the cohorts are numeric it is possible to rename them
levels(adpp$ARM) <- c(
  "A: Drug X",
  "C: Combination"
)
```

```{r include = FALSE}
webr_code_labels <- c("setup")
```

{{< include ../../_utils/webr_no_include.qmd >}}

## Output

::::: panel-tabset
## Plot with Two Cohorts

::: {.panel-tabset .nav-justified group="webr"}
## {{< fa regular file-lines sm fw >}} Preview

```{r plot1, test = list(plot_v1 = "plot")}
use_title <- "Plot of Mean (+/- SD) Cummulative Percentage (%) of Recovered Drug in Urine \nby Analyte, Visit: PK Evaluable Patients" # nolint: line_length.
use_subtitle <- "Analyte: Plasma Drug X \nVisit: CYCLE 1 DAY 1 \nPK Parameter:"
use_footnote <- "Program: \nOutput:"

separation_between_barplots <- 1.5

result <- g_lineplot(
  df = adpp,
  variables = control_lineplot_vars(
    x = "Time",
    y = "AVAL",
    group_var = "ARM",
    paramcd = "PARAM1",
    y_unit = "AVALU"
  ),
  alt_counts_df = adpp,
  y_lab = "Cummulative Percentage",
  x_lab = "Time (hours)",
  y_lab_add_paramcd = FALSE,
  y_lab_add_unit = TRUE,
  interval = "mean_sdi",
  whiskers = c("mean_sdi_lwr", "mean_sdi_upr"),
  title = use_title,
  subtitle = use_subtitle,
  caption = use_footnote,
  ggtheme = theme_nest(),
  position = ggplot2::position_dodge(width = 2)
)

plot <- result + theme(plot.caption = element_text(hjust = 0)) +
  scale_x_continuous(breaks = c(12, 24))
plot
```

```{r include = FALSE}
webr_code_labels <- c("plot1")
```

{{< include ../../_utils/webr.qmd >}}
:::

## Plot with Six Cohorts

::: {.panel-tabset .nav-justified group="webr"}
## {{< fa regular file-lines sm fw >}} Preview

In this case we need to process the data further by artificially adding more random rows. Of course this step is not necessary in the case that data already has more cohorts.

```{r plot2, test = list(plot_v2 = "plot")}
adpp_hck <- adpp %>%
  mutate(AVAL + 1 * rnorm(nrow(adpp), mean = 1, sd = 1)) %>%
  mutate(ARM = as.factor(sample(
    c(
      "D: Drug D",
      "E: Drug E",
      "F: Drug F",
      "G: Drug G"
    ),
    nrow(adpp),
    replace = TRUE,
    prob = c(0.4, 0.3, 0.2, 0.1)
  )))

adpp <- bind_rows(adpp, adpp_hck)

use_title <- "Plot of Mean (+/- SD) Cummulative Percentage (%) of Recovered Drug in Urine \nby Analyte, Visit: PK Evaluable Patients" # nolint: line_length.
use_subtitle <- "Analyte: Plasma Drug X \nVisit: CYCLE 1 DAY 1 \nPK Parameter:"
use_footnote <- "Program: \nOutput:"

separation_between_barplots <- 1.5

result <- g_lineplot(
  df = adpp,
  variables = control_lineplot_vars(
    x = "Time",
    y = "AVAL",
    group_var = "ARM",
    paramcd = "PARAM1",
    y_unit = "AVALU"
  ),
  alt_counts_df = adpp,
  y_lab = "Cummulative Percentage",
  x_lab = "Time (hours)",
  y_lab_add_paramcd = FALSE,
  y_lab_add_unit = TRUE,
  interval = "mean_sdi",
  whiskers = c("mean_sdi_lwr", "mean_sdi_upr"),
  title = use_title,
  subtitle = use_subtitle,
  caption = use_footnote,
  ggtheme = theme_nest(),
  position = ggplot2::position_dodge(width = 2)
)

plot <- result + theme(plot.caption = element_text(hjust = 0)) +
  scale_x_continuous(breaks = c(12, 24))
plot
```

```{r include = FALSE}
webr_code_labels <- c("plot2")
```

{{< include ../../_utils/webr.qmd >}}
:::

## Data Setup

```{r setup}
#| code-fold: show
```
:::::

{{< include ../../_utils/save_results.qmd >}}

{{< include ../../repro.qmd >}}

Made with ❤️ by the NEST Team

  • Edit this page
  • Report an issue
Cookie Preferences