TLG Catalog - Stable
  • Stable
    • Dev
  1. Tables
  2. Efficacy
  3. COXT02
  • Introduction

  • Tables
    • ADA
      • ADAT01
      • ADAT02
      • ADAT03
      • ADAT04A
      • ADAT04B
    • Adverse Events
      • AET01
      • AET01_AESI
      • AET02
      • AET02_SMQ
      • AET03
      • AET04
      • AET04_PI
      • AET05
      • AET05_ALL
      • AET06
      • AET06_SMQ
      • AET07
      • AET09
      • AET09_SMQ
      • AET10
    • Concomitant Medications
      • CMT01
      • CMT01A
      • CMT01B
      • CMT02_PT
    • Deaths
      • DTHT01
    • Demography
      • DMT01
    • Disclosures
      • DISCLOSUREST01
      • EUDRAT01
      • EUDRAT02
    • Disposition
      • DST01
      • PDT01
      • PDT02
    • ECG
      • EGT01
      • EGT02
      • EGT03
      • EGT04
      • EGT05_QTCAT
    • Efficacy
      • AOVT01
      • AOVT02
      • AOVT03
      • CFBT01
      • CMHT01
      • COXT01
      • COXT02
      • DORT01
      • LGRT02
      • MMRMT01
      • ONCT05
      • RATET01
      • RBMIT01
      • RSPT01
      • TTET01
    • Exposure
      • EXT01
    • Lab Results
      • LBT01
      • LBT02
      • LBT03
      • LBT04
      • LBT05
      • LBT06
      • LBT07
      • LBT08
      • LBT09
      • LBT10
      • LBT10_BL
      • LBT11
      • LBT11_BL
      • LBT12
      • LBT12_BL
      • LBT13
      • LBT14
      • LBT15
    • Medical History
      • MHT01
    • Pharmacokinetic
      • PKCT01
      • PKPT02
      • PKPT03
      • PKPT04
      • PKPT05
      • PKPT06
      • PKPT07
      • PKPT08
      • PKPT11
    • Risk Management Plan
      • RMPT01
      • RMPT03
      • RMPT04
      • RMPT05
      • RMPT06
    • Safety
      • ENTXX
    • Vital Signs
      • VST01
      • VST02
  • Listings
    • ADA
      • ADAL02
    • Adverse Events
      • AEL01
      • AEL01_NOLLT
      • AEL02
      • AEL02_ED
      • AEL03
      • AEL04
    • Concomitant Medications
      • CML01
      • CML02A_GL
      • CML02B_GL
    • Development Safety Update Report
      • DSUR4
    • Disposition
      • DSL01
      • DSL02
    • ECG
      • EGL01
    • Efficacy
      • ONCL01
    • Exposure
      • EXL01
    • Lab Results
      • LBL01
      • LBL01_RLS
      • LBL02A
      • LBL02A_RLS
      • LBL02B
    • Medical History
      • MHL01
    • Pharmacokinetic
      • ADAL01
      • PKCL01
      • PKCL02
      • PKPL01
      • PKPL02
      • PKPL04
    • Vital Signs
      • VSL01
  • Graphs
    • Efficacy
      • FSTG01
      • FSTG02
      • KMG01
      • MMRMG01
      • MMRMG02
    • Other
      • BRG01
      • BWG01
      • CIG01
      • IPPG01
      • LTG01
      • MNG01
    • Pharmacokinetic
      • PKCG01
      • PKCG02
      • PKCG03
      • PKPG01
      • PKPG02
      • PKPG03
      • PKPG04
      • PKPG06

  • Appendix
    • Reproducibility

  • Index

On this page

  • Output
  • teal App
  • Reproducibility
    • Timestamp
    • Session Info
    • .lock file
  • Edit this page
  • Report an issue
  1. Tables
  2. Efficacy
  3. COXT02

COXT02

Multivariable Cox Regression


Output

Analysis based on multivariable Cox models is usually not performed for the Clinical Study Report (CSR) or regulatory documents, serving exploratory purposes only (e.g. for publication). In practice, the model usually includes only the main effects (without interaction terms). It produces the estimates for each of the covariates included in the model. The analysis follows the same principles (i.e. stratified vs. unstratified analysis and tie handling) as the general Cox model analysis also used in COXT01. Since there is usually no pre-specified hypothesis testing for such analysis, the p-values must be interpreted with caution.

  • Multivariable Cox Regression
  • Multivariable Cox Regression
    with Interaction Term
  • Multivariable Cox Regression
    Specifying Covariates
  • Multivariable Cox Regression
    Specifying Covariates from ADSUB
  • Multivariable Cox Regression
    Setting Strata, Ties, Alpha Level, Statistics
  • Multivariable Cox Regression
    with Selection Process for Covariates
  • Data Setup

The summarize_coxreg function fits, tidies and arranges a Cox regression model in a table layout using the rtables framework. For a multivariable Cox regression model, argument multivar must be set to TRUE. Arguments variables and control can be specified to set up the model (see ?summarize_coxreg for more details and customization options). All variables specified within variables must be present in the data used when building the table.

To see the same model as a data.frame object, these two arguments (as well as the data) can be passed to the fit_coxreg_multivar function, and the resulting list tidied using broom::tidy().

  • Preview
  • Try this using WebR
Code
variables <- list(
  time = "AVAL",
  event = "EVENT",
  arm = "ARM",
  covariates = c("SEX", "AGE")
)

lyt <- basic_table() %>%
  summarize_coxreg(variables = variables, multivar = TRUE) %>%
  append_topleft("Effect/Covariate Included in the Model")

result <- build_table(lyt = lyt, df = anl)
result
Effect/Covariate Included in the Model   Hazard Ratio      95% CI      p-value
——————————————————————————————————————————————————————————————————————————————
Treatment:                                                                    
  Planned Arm (reference = B: Placebo)                                 0.2643 
    A: Drug X                                0.96       (0.66, 1.42)   0.8536 
    C: Combination                           1.27       (0.88, 1.83)   0.2010 
Covariate:                                                                    
  Sex (reference = F)                                                         
    M                                        1.09       (0.80, 1.48)   0.5987 
  Age                                                                         
    All                                      0.99       (0.97, 1.01)   0.5104 
Experimental use!

WebR is a tool allowing you to run R code in the web browser. Modify the code below and click run to see the results. Alternatively, copy the code and click here to open WebR in a new tab.

The estimation of interaction terms is not supported.

Interaction terms are not included in the GDSR. For this reason and because we must take precautions when fitting such models, this functionality has not been translated in fit_coxreg_multivar. Please remove interaction terms or, if required by the study, refer to the survival::coxph function. Aside from this, using tern the developer must add the necessary variables to the analysis dataset during pre-processing based on ADVS or ADSUB. An example can be found in DMT01.

This option is not supported.

See the Multivariable Cox Regression with Interaction Term tab for more details.

This option is not supported.

See the Multivariable Cox Regression with Interaction Term tab for more details.

Additional controls can be customized using control_coxreg (see ?control_coxreg) such as the ties calculation method and the confidence level. Stratification variables can be added via the strata element of the variables list.

  • Preview
  • Try this using WebR
Code
variables <- list(
  time = "AVAL",
  event = "EVENT",
  arm = "ARMCD",
  covariates = c("SEX", "AGE"),
  strata = "RACE"
)

control <- control_coxreg(
  conf_level = 0.9,
  ties = "efron"
)

lyt <- basic_table() %>%
  summarize_coxreg(
    variables = variables,
    control = control,
    multivar = TRUE,
    .stats = c("hr", "ci")
  ) %>%
  append_topleft("Effect/Covariate Included in the Model")

result <- build_table(lyt = lyt, df = anl)
result
Effect/Covariate Included in the Model   Hazard Ratio      90% CI   
————————————————————————————————————————————————————————————————————
Treatment:                                                          
  Planned Arm Code (reference = ARM A)                              
    ARM B                                    1.03       (0.74, 1.42)
    ARM C                                    1.30       (0.96, 1.77)
Covariate:                                                          
  Sex (reference = F)                                               
    M                                        1.08       (0.83, 1.40)
  Age                                                               
    All                                      0.99       (0.98, 1.01)
Experimental use!

WebR is a tool allowing you to run R code in the web browser. Modify the code below and click run to see the results. Alternatively, copy the code and click here to open WebR in a new tab.

See the Multivariable Cox Regression with Interaction Term tab.

Code
library(dplyr)
library(tern)
library(broom)

adtte <- random.cdisc.data::cadtte

# Ensure character variables are converted to factors and empty strings and NAs are explicit missing levels.
adtte <- df_explicit_na(adtte)

anl <- adtte %>%
  filter(
    PARAMCD == "OS",
    SEX %in% c("F", "M"),
    RACE %in% c("ASIAN", "BLACK OR AFRICAN AMERICAN", "WHITE")
  ) %>%
  mutate(
    ARM = droplevels(relevel(ARM, "B: Placebo")),
    SEX = droplevels(SEX),
    RACE = droplevels(RACE)
  ) %>%
  mutate(EVENT = 1 - CNSR) %>%
  var_relabel(
    ARM = "Planned Arm",
    SEX = "Sex",
    RACE = "Race",
    AGE = "Age"
  )

teal App

  • Preview
  • Try this using shinylive
Code
library(teal.modules.clinical)

## Data reproducible code
data <- teal_data()
data <- within(data, {
  ADSL <- random.cdisc.data::cadsl
  ADTTE <- random.cdisc.data::cadtte
})
datanames <- c("ADSL", "ADTTE")
datanames(data) <- datanames
Warning: `datanames<-()` was deprecated in teal.data 0.7.0.
ℹ invalid to use `datanames()<-` or `names()<-` on an object of class
  `teal_data`. See ?names.teal_data
Code
join_keys(data) <- default_cdisc_join_keys[datanames]

## Reusable Configuration For Modules
ADTTE <- data[["ADTTE"]]
arm_ref_comp <- list(
  ACTARMCD = list(
    ref = "ARM B",
    comp = c("ARM A", "ARM C")
  ),
  ARM = list(
    ref = "B: Placebo",
    comp = c("A: Drug X", "C: Combination")
  )
)

## Setup App
app <- init(
  data = data,
  modules = modules(
    tm_t_coxreg(
      label = "Cox Reg.",
      dataname = "ADTTE",
      arm_var = choices_selected(c("ARM", "ARMCD", "ACTARMCD"), "ARM"),
      arm_ref_comp = arm_ref_comp,
      paramcd = choices_selected(
        value_choices(ADTTE, "PARAMCD", "PARAM"), "OS"
      ),
      strata_var = choices_selected(
        c("SEX", "STRATA1", "STRATA2"), NULL
      ),
      cov_var = choices_selected(
        c("AGE", "SEX", "RACE"), c("AGE", "SEX")
      ),
      multivariate = TRUE
    )
  )
)
shinyApp(app$ui, app$server)

Experimental use!

shinylive allow you to modify to run shiny application entirely in the web browser. Modify the code below and click re-run the app to see the results. The performance is slighly worse and some of the features (e.g. downloading) might not work at all.

#| '!! shinylive warning !!': |
#|   shinylive does not work in self-contained HTML documents.
#|   Please set `embed-resources: false` in your metadata.
#| standalone: true
#| viewerHeight: 800
#| editorHeight: 200
#| components: [viewer, editor]
#| layout: vertical

# -- WEBR HELPERS --
options(webr_pkg_repos = c("r-universe" = "https://insightsengineering.r-universe.dev", getOption("webr_pkg_repos")))

# -- APP CODE --
library(teal.modules.clinical)

## Data reproducible code
data <- teal_data()
data <- within(data, {
  ADSL <- random.cdisc.data::cadsl
  ADTTE <- random.cdisc.data::cadtte
})
datanames <- c("ADSL", "ADTTE")
datanames(data) <- datanames
join_keys(data) <- default_cdisc_join_keys[datanames]

## Reusable Configuration For Modules
ADTTE <- data[["ADTTE"]]
arm_ref_comp <- list(
  ACTARMCD = list(
    ref = "ARM B",
    comp = c("ARM A", "ARM C")
  ),
  ARM = list(
    ref = "B: Placebo",
    comp = c("A: Drug X", "C: Combination")
  )
)

## Setup App
app <- init(
  data = data,
  modules = modules(
    tm_t_coxreg(
      label = "Cox Reg.",
      dataname = "ADTTE",
      arm_var = choices_selected(c("ARM", "ARMCD", "ACTARMCD"), "ARM"),
      arm_ref_comp = arm_ref_comp,
      paramcd = choices_selected(
        value_choices(ADTTE, "PARAMCD", "PARAM"), "OS"
      ),
      strata_var = choices_selected(
        c("SEX", "STRATA1", "STRATA2"), NULL
      ),
      cov_var = choices_selected(
        c("AGE", "SEX", "RACE"), c("AGE", "SEX")
      ),
      multivariate = TRUE
    )
  )
)
shinyApp(app$ui, app$server)

Reproducibility

Timestamp

[1] "2025-07-09 17:43:59 UTC"

Session Info

─ Session info ───────────────────────────────────────────────────────────────
 setting  value
 version  R version 4.5.0 (2025-04-11)
 os       Ubuntu 24.04.2 LTS
 system   x86_64, linux-gnu
 ui       X11
 language (EN)
 collate  en_US.UTF-8
 ctype    en_US.UTF-8
 tz       Etc/UTC
 date     2025-07-09
 pandoc   3.7.0.2 @ /usr/bin/ (via rmarkdown)
 quarto   1.7.32 @ /usr/local/bin/quarto

─ Packages ───────────────────────────────────────────────────────────────────
 package               * version  date (UTC) lib source
 abind                   1.4-8    2024-09-12 [1] RSPM
 backports               1.5.0    2024-05-23 [1] RSPM
 brio                    1.1.5    2024-04-24 [1] RSPM
 broom                 * 1.0.8    2025-03-28 [1] RSPM
 bslib                   0.9.0    2025-01-30 [1] RSPM
 cachem                  1.1.0    2024-05-16 [1] RSPM
 callr                   3.7.6    2024-03-25 [1] RSPM
 car                     3.1-3    2024-09-27 [1] RSPM
 carData                 3.0-5    2022-01-06 [1] RSPM
 checkmate               2.3.2    2024-07-29 [1] RSPM
 chromote                0.5.1    2025-04-24 [1] RSPM
 cli                     3.6.5    2025-04-23 [1] RSPM
 coda                    0.19-4.1 2024-01-31 [1] CRAN (R 4.5.0)
 codetools               0.2-20   2024-03-31 [2] CRAN (R 4.5.0)
 curl                    6.4.0    2025-06-22 [1] RSPM
 dichromat               2.0-0.1  2022-05-02 [1] CRAN (R 4.5.0)
 digest                  0.6.37   2024-08-19 [1] RSPM
 dplyr                 * 1.1.4    2023-11-17 [1] RSPM
 emmeans                 1.11.1   2025-05-04 [1] RSPM
 estimability            1.5.1    2024-05-12 [1] RSPM
 evaluate                1.0.4    2025-06-18 [1] RSPM
 farver                  2.1.2    2024-05-13 [1] RSPM
 fastmap                 1.2.0    2024-05-15 [1] RSPM
 fontawesome             0.5.3    2024-11-16 [1] RSPM
 forcats                 1.0.0    2023-01-29 [1] RSPM
 formatR                 1.14     2023-01-17 [1] CRAN (R 4.5.0)
 formatters            * 0.5.11   2025-04-09 [1] RSPM
 Formula                 1.2-5    2023-02-24 [1] RSPM
 geepack                 1.3.12   2024-09-23 [1] RSPM
 generics                0.1.4    2025-05-09 [1] RSPM
 ggplot2                 3.5.2    2025-04-09 [1] RSPM
 glue                    1.8.0    2024-09-30 [1] RSPM
 gtable                  0.3.6    2024-10-25 [1] RSPM
 htmltools               0.5.8.1  2024-04-04 [1] RSPM
 htmlwidgets             1.6.4    2023-12-06 [1] RSPM
 httpuv                  1.6.16   2025-04-16 [1] RSPM
 jquerylib               0.1.4    2021-04-26 [1] RSPM
 jsonlite                2.0.0    2025-03-27 [1] RSPM
 knitr                   1.50     2025-03-16 [1] RSPM
 later                   1.4.2    2025-04-08 [1] RSPM
 lattice                 0.22-7   2025-04-02 [2] CRAN (R 4.5.0)
 lifecycle               1.0.4    2023-11-07 [1] RSPM
 logger                  0.4.0    2024-10-22 [1] RSPM
 magrittr              * 2.0.3    2022-03-30 [1] RSPM
 MASS                    7.3-65   2025-02-28 [2] CRAN (R 4.5.0)
 Matrix                  1.7-3    2025-03-11 [1] CRAN (R 4.5.0)
 memoise                 2.0.1    2021-11-26 [1] RSPM
 mime                    0.13     2025-03-17 [1] RSPM
 multcomp                1.4-28   2025-01-29 [1] RSPM
 mvtnorm                 1.3-3    2025-01-10 [1] RSPM
 nestcolor               0.1.3    2025-01-21 [1] RSPM
 nlme                    3.1-168  2025-03-31 [2] CRAN (R 4.5.0)
 pillar                  1.11.0   2025-07-04 [1] RSPM
 pkgcache                2.2.4    2025-05-26 [1] RSPM
 pkgconfig               2.0.3    2019-09-22 [1] RSPM
 processx                3.8.6    2025-02-21 [1] RSPM
 promises                1.3.3    2025-05-29 [1] RSPM
 ps                      1.9.1    2025-04-12 [1] RSPM
 purrr                   1.0.4    2025-02-05 [1] RSPM
 R6                      2.6.1    2025-02-15 [1] RSPM
 random.cdisc.data       0.3.16   2024-10-10 [1] RSPM
 rbibutils               2.3      2024-10-04 [1] RSPM
 RColorBrewer            1.1-3    2022-04-03 [1] RSPM
 Rcpp                    1.1.0    2025-07-02 [1] RSPM
 Rdpack                  2.6.4    2025-04-09 [1] RSPM
 rlang                   1.1.6    2025-04-11 [1] RSPM
 rmarkdown               2.29     2024-11-04 [1] RSPM
 rtables               * 0.6.13   2025-06-19 [1] RSPM
 sandwich                3.1-1    2024-09-15 [1] RSPM
 sass                    0.4.10   2025-04-11 [1] RSPM
 scales                  1.4.0    2025-04-24 [1] RSPM
 sessioninfo             1.2.3    2025-02-05 [1] any (@1.2.3)
 shiny                 * 1.11.1   2025-07-03 [1] RSPM
 shinycssloaders         1.1.0    2024-07-30 [1] RSPM
 shinyjs                 2.1.0    2021-12-23 [1] RSPM
 shinyvalidate           0.1.3    2023-10-04 [1] RSPM
 shinyWidgets            0.9.0    2025-02-21 [1] RSPM
 stringi                 1.8.7    2025-03-27 [1] RSPM
 stringr                 1.5.1    2023-11-14 [1] RSPM
 survival                3.8-3    2024-12-17 [2] CRAN (R 4.5.0)
 teal                  * 0.16.0   2025-02-23 [1] RSPM
 teal.code             * 0.6.1    2025-02-14 [1] RSPM
 teal.data             * 0.7.0    2025-01-28 [1] RSPM
 teal.logger             0.4.0    2025-07-08 [1] RSPM
 teal.modules.clinical * 0.10.0   2025-02-28 [1] RSPM
 teal.reporter           0.4.0    2025-01-24 [1] RSPM
 teal.slice            * 0.6.0    2025-02-03 [1] RSPM
 teal.transform        * 0.6.0    2025-02-12 [1] RSPM
 teal.widgets            0.4.3    2025-01-31 [1] RSPM
 tern                  * 0.9.9    2025-06-20 [1] RSPM
 tern.gee                0.1.5    2024-08-23 [1] RSPM
 testthat                3.2.3    2025-01-13 [1] RSPM
 TH.data                 1.1-3    2025-01-17 [1] RSPM
 tibble                  3.3.0    2025-06-08 [1] RSPM
 tidyr                   1.3.1    2024-01-24 [1] RSPM
 tidyselect              1.2.1    2024-03-11 [1] RSPM
 vctrs                   0.6.5    2023-12-01 [1] RSPM
 webshot                 0.5.5    2023-06-26 [1] CRAN (R 4.5.0)
 webshot2                0.1.2    2025-04-23 [1] RSPM
 websocket               1.4.4    2025-04-10 [1] RSPM
 withr                   3.0.2    2024-10-28 [1] RSPM
 xfun                    0.52     2025-04-02 [1] RSPM
 xtable                  1.8-4    2019-04-21 [1] RSPM
 yaml                    2.3.10   2024-07-26 [1] RSPM
 zoo                     1.8-14   2025-04-10 [1] RSPM

 [1] /usr/local/lib/R/site-library
 [2] /usr/local/lib/R/library
 [3] /github/home/R/x86_64-pc-linux-gnu-library/4.5
 * ── Packages attached to the search path.

──────────────────────────────────────────────────────────────────────────────

.lock file

Download the .lock file and use renv::restore() on it to recreate environment used to generate this website.

Download

COXT01
DORT01
Source Code
---
title: COXT02
subtitle: Multivariable Cox Regression
---

------------------------------------------------------------------------

{{< include ../../_utils/envir_hook.qmd >}}

```{r setup, echo = FALSE, warning = FALSE, message = FALSE}
library(dplyr)
library(tern)
library(broom)

adtte <- random.cdisc.data::cadtte

# Ensure character variables are converted to factors and empty strings and NAs are explicit missing levels.
adtte <- df_explicit_na(adtte)

anl <- adtte %>%
  filter(
    PARAMCD == "OS",
    SEX %in% c("F", "M"),
    RACE %in% c("ASIAN", "BLACK OR AFRICAN AMERICAN", "WHITE")
  ) %>%
  mutate(
    ARM = droplevels(relevel(ARM, "B: Placebo")),
    SEX = droplevels(SEX),
    RACE = droplevels(RACE)
  ) %>%
  mutate(EVENT = 1 - CNSR) %>%
  var_relabel(
    ARM = "Planned Arm",
    SEX = "Sex",
    RACE = "Race",
    AGE = "Age"
  )
```

```{r include = FALSE}
webr_code_labels <- c("setup")
```

{{< include ../../_utils/webr_no_include.qmd >}}

## Output

Analysis based on multivariable Cox models is usually not performed for the Clinical Study Report (CSR) or regulatory documents, serving exploratory purposes only (e.g. for publication). In practice, the model usually includes only the main effects (without interaction terms). It produces the estimates for each of the covariates included in the model. The analysis follows the same principles (i.e. stratified vs. unstratified analysis and tie handling) as the general Cox model analysis also used in `COXT01`. Since there is usually no pre-specified hypothesis testing for such analysis, the p-values must be interpreted with caution.

::::: panel-tabset
## Multivariable Cox Regression

The `summarize_coxreg` function fits, tidies and arranges a Cox regression model in a table layout using the `rtables` framework. For a multivariable Cox regression model, argument `multivar` must be set to `TRUE`. Arguments `variables` and `control` can be specified to set up the model (see `?summarize_coxreg` for more details and customization options). All variables specified within `variables` must be present in the data used when building the table.

To see the same model as a `data.frame` object, these two arguments (as well as the data) can be passed to the `fit_coxreg_multivar` function, and the resulting list tidied using `broom::tidy()`.

::: {.panel-tabset .nav-justified group="webr"}
## {{< fa regular file-lines sm fw >}} Preview

```{r variant1, test = list(result_v1 = "result")}
variables <- list(
  time = "AVAL",
  event = "EVENT",
  arm = "ARM",
  covariates = c("SEX", "AGE")
)

lyt <- basic_table() %>%
  summarize_coxreg(variables = variables, multivar = TRUE) %>%
  append_topleft("Effect/Covariate Included in the Model")

result <- build_table(lyt = lyt, df = anl)
result
```

```{r include = FALSE}
webr_code_labels <- c("variant1")
```

{{< include ../../_utils/webr.qmd >}}
:::

## Multivariable Cox Regression <br/> with Interaction Term

The estimation of interaction terms is not supported.

Interaction terms are not included in the GDSR. For this reason and because we must take precautions when fitting such models, this functionality has not been translated in `fit_coxreg_multivar`. Please remove interaction terms or, if required by the study, refer to the `survival::coxph` function. Aside from this, using `tern` the developer must add the necessary variables to the analysis dataset during pre-processing based on ADVS or ADSUB. An example can be found in `DMT01`.

## Multivariable Cox Regression <br/> Specifying Covariates

This option is not supported.

See the *Multivariable Cox Regression with Interaction Term* tab for more details.

## Multivariable Cox Regression <br/> Specifying Covariates from ADSUB

This option is not supported.

See the *Multivariable Cox Regression with Interaction Term* tab for more details.

## Multivariable Cox Regression <br/> Setting Strata, Ties, Alpha Level, Statistics

Additional controls can be customized using `control_coxreg` (see `?control_coxreg`) such as the ties calculation method and the confidence level. Stratification variables can be added via the `strata` element of the `variables` list.

::: {.panel-tabset .nav-justified group="webr"}
## {{< fa regular file-lines sm fw >}} Preview

```{r variant2, test = list(result_v2 = "result")}
variables <- list(
  time = "AVAL",
  event = "EVENT",
  arm = "ARMCD",
  covariates = c("SEX", "AGE"),
  strata = "RACE"
)

control <- control_coxreg(
  conf_level = 0.9,
  ties = "efron"
)

lyt <- basic_table() %>%
  summarize_coxreg(
    variables = variables,
    control = control,
    multivar = TRUE,
    .stats = c("hr", "ci")
  ) %>%
  append_topleft("Effect/Covariate Included in the Model")

result <- build_table(lyt = lyt, df = anl)
result
```

```{r include = FALSE}
webr_code_labels <- c("variant2")
```

{{< include ../../_utils/webr.qmd >}}
:::

## Multivariable Cox Regression <br/> with Selection Process for Covariates

See the *Multivariable Cox Regression with Interaction Term* tab.

## Data Setup

```{r setup}
#| code-fold: show
```
:::::

{{< include ../../_utils/save_results.qmd >}}

## `teal` App

::: {.panel-tabset .nav-justified}
## {{< fa regular file-lines fa-sm fa-fw >}} Preview

```{r teal, opts.label = c("skip_if_testing", "app")}
library(teal.modules.clinical)

## Data reproducible code
data <- teal_data()
data <- within(data, {
  ADSL <- random.cdisc.data::cadsl
  ADTTE <- random.cdisc.data::cadtte
})
datanames <- c("ADSL", "ADTTE")
datanames(data) <- datanames
join_keys(data) <- default_cdisc_join_keys[datanames]

## Reusable Configuration For Modules
ADTTE <- data[["ADTTE"]]
arm_ref_comp <- list(
  ACTARMCD = list(
    ref = "ARM B",
    comp = c("ARM A", "ARM C")
  ),
  ARM = list(
    ref = "B: Placebo",
    comp = c("A: Drug X", "C: Combination")
  )
)

## Setup App
app <- init(
  data = data,
  modules = modules(
    tm_t_coxreg(
      label = "Cox Reg.",
      dataname = "ADTTE",
      arm_var = choices_selected(c("ARM", "ARMCD", "ACTARMCD"), "ARM"),
      arm_ref_comp = arm_ref_comp,
      paramcd = choices_selected(
        value_choices(ADTTE, "PARAMCD", "PARAM"), "OS"
      ),
      strata_var = choices_selected(
        c("SEX", "STRATA1", "STRATA2"), NULL
      ),
      cov_var = choices_selected(
        c("AGE", "SEX", "RACE"), c("AGE", "SEX")
      ),
      multivariate = TRUE
    )
  )
)
shinyApp(app$ui, app$server)
```

{{< include ../../_utils/shinylive.qmd >}}
:::

{{< include ../../repro.qmd >}}

Made with ❤️ by the NEST Team

  • Edit this page
  • Report an issue
Cookie Preferences