TLG Catalog - Stable
  • Stable
    • Dev
  1. Tables
  2. Efficacy
  3. ONCT05
  • Introduction

  • Tables
    • ADA
      • ADAT01
      • ADAT02
      • ADAT03
      • ADAT04A
      • ADAT04B
    • Adverse Events
      • AET01
      • AET01_AESI
      • AET02
      • AET02_SMQ
      • AET03
      • AET04
      • AET04_PI
      • AET05
      • AET05_ALL
      • AET06
      • AET06_SMQ
      • AET07
      • AET09
      • AET09_SMQ
      • AET10
    • Concomitant Medications
      • CMT01
      • CMT01A
      • CMT01B
      • CMT02_PT
    • Deaths
      • DTHT01
    • Demography
      • DMT01
    • Disclosures
      • DISCLOSUREST01
      • EUDRAT01
      • EUDRAT02
    • Disposition
      • DST01
      • PDT01
      • PDT02
    • ECG
      • EGT01
      • EGT02
      • EGT03
      • EGT04
      • EGT05_QTCAT
    • Efficacy
      • AOVT01
      • AOVT02
      • AOVT03
      • CFBT01
      • CMHT01
      • COXT01
      • COXT02
      • DORT01
      • LGRT02
      • MMRMT01
      • ONCT05
      • RATET01
      • RBMIT01
      • RSPT01
      • TTET01
    • Exposure
      • EXT01
    • Lab Results
      • LBT01
      • LBT02
      • LBT03
      • LBT04
      • LBT05
      • LBT06
      • LBT07
      • LBT08
      • LBT09
      • LBT10
      • LBT10_BL
      • LBT11
      • LBT11_BL
      • LBT12
      • LBT12_BL
      • LBT13
      • LBT14
      • LBT15
    • Medical History
      • MHT01
    • Pharmacokinetic
      • PKCT01
      • PKPT02
      • PKPT03
      • PKPT04
      • PKPT05
      • PKPT06
      • PKPT07
      • PKPT08
      • PKPT11
    • Risk Management Plan
      • RMPT01
      • RMPT03
      • RMPT04
      • RMPT05
      • RMPT06
    • Safety
      • ENTXX
    • Vital Signs
      • VST01
      • VST02
  • Listings
    • ADA
      • ADAL02
    • Adverse Events
      • AEL01
      • AEL01_NOLLT
      • AEL02
      • AEL02_ED
      • AEL03
      • AEL04
    • Concomitant Medications
      • CML01
      • CML02A_GL
      • CML02B_GL
    • Development Safety Update Report
      • DSUR4
    • Disposition
      • DSL01
      • DSL02
    • ECG
      • EGL01
    • Efficacy
      • ONCL01
    • Exposure
      • EXL01
    • Lab Results
      • LBL01
      • LBL01_RLS
      • LBL02A
      • LBL02A_RLS
      • LBL02B
    • Medical History
      • MHL01
    • Pharmacokinetic
      • ADAL01
      • PKCL01
      • PKCL02
      • PKPL01
      • PKPL02
      • PKPL04
    • Vital Signs
      • VSL01
  • Graphs
    • Efficacy
      • FSTG01
      • FSTG02
      • KMG01
      • MMRMG01
      • MMRMG02
    • Other
      • BRG01
      • BWG01
      • CIG01
      • IPPG01
      • LTG01
      • MNG01
    • Pharmacokinetic
      • PKCG01
      • PKCG02
      • PKCG03
      • PKPG01
      • PKPG02
      • PKPG03
      • PKPG04
      • PKPG06

  • Appendix
    • Reproducibility

  • Index

On this page

  • Output
  • teal App
  • Reproducibility
    • Timestamp
    • Session Info
    • .lock file
  • Edit this page
  • Report an issue
  1. Tables
  2. Efficacy
  3. ONCT05

ONCT05

Objective Response Rate by Subgroup


Output

  • Standard Table
  • Table Specifying
    Class Variables
  • Table Selecting Columns
    and Changing the Alpha Level
  • Table Setting Values
    Indicating Response
  • Data Setup
  • Preview
  • Try this using WebR
Code
df <- extract_rsp_subgroups(
  variables = list(
    rsp = "rsp",
    arm = "ARM",
    subgroups = c("SEX", "STRATA2")
  ),
  data = anl
)

result <- basic_table() %>%
  tabulate_rsp_subgroups(df, vars = c("n_tot", "n", "n_rsp", "prop", "or", "ci"))

result
                                              B: Placebo                         A: Drug X                                       
Baseline Risk Factors     Total n    n    Responders   Response (%)    n    Responders   Response (%)   Odds Ratio      95% CI   
—————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————
All Patients                268     134       84          62.7%       134      100          74.6%          1.75      (1.04, 2.95)
Sex                                                                                                                              
  F                         161     82        48          58.5%       79        61          77.2%          2.40      (1.21, 4.76)
  M                         107     52        36          69.2%       55        39          70.9%          1.08      (0.47, 2.48)
Stratification Factor 2                                                                                                          
  S1                        140     67        38          56.7%       73        56          76.7%          2.51      (1.22, 5.20)
  S2                        128     67        46          68.7%       61        44          72.1%          1.18      (0.55, 2.53)
Experimental use!

WebR is a tool allowing you to run R code in the web browser. Modify the code below and click run to see the results. Alternatively, copy the code and click here to open WebR in a new tab.

  • Preview
  • Try this using WebR

Here, the levels of subgroup variables SEX and STRATA1 are reordered. STRATA1 is reordered by frequency.

Code
anl_reorder <- anl %>%
  mutate(
    SEX = forcats::fct_relevel(SEX, "M", "F"),
    STRATA1 = forcats::fct_infreq(STRATA1)
  )

df <- extract_rsp_subgroups(
  variables = list(rsp = "rsp", arm = "ARM", subgroups = c("SEX", "STRATA1")),
  data = anl_reorder
)

result <- basic_table() %>%
  tabulate_rsp_subgroups(df, vars = c("n_tot", "n", "n_rsp", "prop", "or", "ci"))

result
                                              B: Placebo                         A: Drug X                                       
Baseline Risk Factors     Total n    n    Responders   Response (%)    n    Responders   Response (%)   Odds Ratio      95% CI   
—————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————
All Patients                268     134       84          62.7%       134      100          74.6%          1.75      (1.04, 2.95)
Sex                                                                                                                              
  M                         107     52        36          69.2%       55        39          70.9%          1.08      (0.47, 2.48)
  F                         161     82        48          58.5%       79        61          77.2%          2.40      (1.21, 4.76)
Stratification Factor 1                                                                                                          
  C                         94      45        33          73.3%       49        37          75.5%          1.12      (0.44, 2.83)
  B                         92      45        26          57.8%       47        32          68.1%          1.56      (0.66, 3.66)
  A                         82      44        25          56.8%       38        31          81.6%          3.37      (1.22, 9.28)
Experimental use!

WebR is a tool allowing you to run R code in the web browser. Modify the code below and click run to see the results. Alternatively, copy the code and click here to open WebR in a new tab.

  • Preview
  • Try this using WebR
Code
df <- extract_rsp_subgroups(
  variables = list(
    rsp = "rsp",
    arm = "ARM",
    subgroups = c("SEX", "STRATA2")
  ),
  data = anl,
  conf_level = 0.9,
  method = "chisq"
)

result <- basic_table() %>%
  tabulate_rsp_subgroups(df, vars = c("n_tot", "n", "n_rsp", "prop", "or", "ci", "pval"))

result
                                              B: Placebo                         A: Drug X                                                                    
Baseline Risk Factors     Total n    n    Responders   Response (%)    n    Responders   Response (%)   Odds Ratio      90% CI      p-value (Chi-Squared Test)
——————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————
All Patients                268     134       84          62.7%       134      100          74.6%          1.75      (1.13, 2.72)             0.0351          
Sex                                                                                                                                                           
  F                         161     82        48          58.5%       79        61          77.2%          2.40      (1.35, 4.27)             0.0113          
  M                         107     52        36          69.2%       55        39          70.9%          1.08      (0.54, 2.17)             0.8497          
Stratification Factor 2                                                                                                                                       
  S1                        140     67        38          56.7%       73        56          76.7%          2.51      (1.37, 4.63)             0.0119          
  S2                        128     67        46          68.7%       61        44          72.1%          1.18      (0.62, 2.24)             0.6674          
Experimental use!

WebR is a tool allowing you to run R code in the web browser. Modify the code below and click run to see the results. Alternatively, copy the code and click here to open WebR in a new tab.

  • Preview
  • Try this using WebR

Create a new variable new_rsp in anl data that uses new criteria for responder.

Code
anl_new <- anl %>%
  mutate(new_rsp = AVALC == "CR")

df <- extract_rsp_subgroups(
  variables = list(
    rsp = "new_rsp",
    arm = "ARM",
    subgroups = c("SEX", "STRATA2")
  ),
  data = anl_new
)

result <- basic_table() %>%
  tabulate_rsp_subgroups(df, vars = c("n_tot", "n", "n_rsp", "prop", "or", "ci"))

result
                                              B: Placebo                         A: Drug X                                       
Baseline Risk Factors     Total n    n    Responders   Response (%)    n    Responders   Response (%)   Odds Ratio      95% CI   
—————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————
All Patients                268     134       47          35.1%       134       60          44.8%          1.50      (0.92, 2.45)
Sex                                                                                                                              
  F                         161     82        25          30.5%       79        39          49.4%          2.22      (1.17, 4.24)
  M                         107     52        22          42.3%       55        21          38.2%          0.84      (0.39, 1.83)
Stratification Factor 2                                                                                                          
  S1                        140     67        21          31.3%       73        31          42.5%          1.62      (0.81, 3.24)
  S2                        128     67        26          38.8%       61        29          47.5%          1.43      (0.71, 2.89)
Experimental use!

WebR is a tool allowing you to run R code in the web browser. Modify the code below and click run to see the results. Alternatively, copy the code and click here to open WebR in a new tab.

Code
library(tern)
library(dplyr)

adsl <- random.cdisc.data::cadsl
adrs <- random.cdisc.data::cadrs

# Ensure character variables are converted to factors and empty strings and NAs are explicit missing levels.
adsl <- df_explicit_na(adsl)
adrs <- df_explicit_na(adrs)

adsl <- adsl %>%
  select(STUDYID, USUBJID, ARM, SEX, RACE, STRATA1, STRATA2)

adrs <- adrs %>%
  filter(PARAMCD == "INVET") %>%
  select(STUDYID, USUBJID, PARAMCD, AVALC)

anl <- inner_join(adsl, adrs, by = c("STUDYID", "USUBJID"))
anl_labels <- var_labels(anl)

anl <- anl %>%
  filter(ARM %in% c("A: Drug X", "B: Placebo")) %>%
  mutate(
    # Reorder levels of factor to make the placebo group the reference arm.
    ARM = relevel(ARM, ref = "B: Placebo") %>%
      droplevels()
  ) %>%
  droplevels() %>%
  mutate(rsp = AVALC %in% c("CR", "PR"))

var_labels(anl) <- c(anl_labels, rsp = "Is Response")

teal App

  • Preview
  • Try this using shinylive
Code
# Use table, embedded in response forest plot module.
library(teal.modules.clinical)

## Data reproducible code
data <- teal_data()
data <- within(data, {
  ADSL <- random.cdisc.data::cadsl
  ADRS <- random.cdisc.data::cadrs

  # Ensure character variables are converted to factors and empty strings and NAs are explicit missing levels.
  ADSL <- df_explicit_na(ADSL)
  ADRS <- df_explicit_na(ADRS)
})
datanames <- c("ADSL", "ADRS")
datanames(data) <- datanames
Warning: `datanames<-()` was deprecated in teal.data 0.7.0.
ℹ invalid to use `datanames()<-` or `names()<-` on an object of class
  `teal_data`. See ?names.teal_data
Code
join_keys(data) <- default_cdisc_join_keys[datanames]

## Reusable Configuration For Modules
ADSL <- data[["ADSL"]]
ADRS <- data[["ADRS"]]
arm_ref_comp <- list(
  ARM = list(
    ref = "B: Placebo",
    comp = c("A: Drug X", "C: Combination")
  ),
  ARMCD = list(
    ref = "ARM B",
    comp = c("ARM A", "ARM C")
  )
)

## Setup App
app <- init(
  data = data,
  modules = modules(
    tm_g_forest_rsp(
      label = "Forest Response",
      dataname = "ADRS",
      arm_var = choices_selected(
        variable_choices(ADSL, c("ARM", "ARMCD")),
        "ARMCD"
      ),
      arm_ref_comp = arm_ref_comp,
      paramcd = choices_selected(
        value_choices(ADRS, "PARAMCD", "PARAM"),
        "BESRSPI"
      ),
      subgroup_var = choices_selected(
        variable_choices(ADSL, names(ADSL)),
        c("SEX")
      ),
      strata_var = choices_selected(
        variable_choices(ADSL, c("STRATA1", "STRATA2")),
        "STRATA2"
      ),
      plot_height = c(600L, 200L, 2000L)
    )
  )
)

shinyApp(app$ui, app$server)

Experimental use!

shinylive allow you to modify to run shiny application entirely in the web browser. Modify the code below and click re-run the app to see the results. The performance is slighly worse and some of the features (e.g. downloading) might not work at all.

#| '!! shinylive warning !!': |
#|   shinylive does not work in self-contained HTML documents.
#|   Please set `embed-resources: false` in your metadata.
#| standalone: true
#| viewerHeight: 800
#| editorHeight: 200
#| components: [viewer, editor]
#| layout: vertical

# -- WEBR HELPERS --
options(webr_pkg_repos = c("r-universe" = "https://insightsengineering.r-universe.dev", getOption("webr_pkg_repos")))

# -- APP CODE --
# Use table, embedded in response forest plot module.
library(teal.modules.clinical)

## Data reproducible code
data <- teal_data()
data <- within(data, {
  ADSL <- random.cdisc.data::cadsl
  ADRS <- random.cdisc.data::cadrs

  # Ensure character variables are converted to factors and empty strings and NAs are explicit missing levels.
  ADSL <- df_explicit_na(ADSL)
  ADRS <- df_explicit_na(ADRS)
})
datanames <- c("ADSL", "ADRS")
datanames(data) <- datanames
join_keys(data) <- default_cdisc_join_keys[datanames]

## Reusable Configuration For Modules
ADSL <- data[["ADSL"]]
ADRS <- data[["ADRS"]]
arm_ref_comp <- list(
  ARM = list(
    ref = "B: Placebo",
    comp = c("A: Drug X", "C: Combination")
  ),
  ARMCD = list(
    ref = "ARM B",
    comp = c("ARM A", "ARM C")
  )
)

## Setup App
app <- init(
  data = data,
  modules = modules(
    tm_g_forest_rsp(
      label = "Forest Response",
      dataname = "ADRS",
      arm_var = choices_selected(
        variable_choices(ADSL, c("ARM", "ARMCD")),
        "ARMCD"
      ),
      arm_ref_comp = arm_ref_comp,
      paramcd = choices_selected(
        value_choices(ADRS, "PARAMCD", "PARAM"),
        "BESRSPI"
      ),
      subgroup_var = choices_selected(
        variable_choices(ADSL, names(ADSL)),
        c("SEX")
      ),
      strata_var = choices_selected(
        variable_choices(ADSL, c("STRATA1", "STRATA2")),
        "STRATA2"
      ),
      plot_height = c(600L, 200L, 2000L)
    )
  )
)

shinyApp(app$ui, app$server)

Reproducibility

Timestamp

[1] "2025-07-09 17:44:48 UTC"

Session Info

─ Session info ───────────────────────────────────────────────────────────────
 setting  value
 version  R version 4.5.0 (2025-04-11)
 os       Ubuntu 24.04.2 LTS
 system   x86_64, linux-gnu
 ui       X11
 language (EN)
 collate  en_US.UTF-8
 ctype    en_US.UTF-8
 tz       Etc/UTC
 date     2025-07-09
 pandoc   3.7.0.2 @ /usr/bin/ (via rmarkdown)
 quarto   1.7.32 @ /usr/local/bin/quarto

─ Packages ───────────────────────────────────────────────────────────────────
 package               * version  date (UTC) lib source
 backports               1.5.0    2024-05-23 [1] RSPM
 brio                    1.1.5    2024-04-24 [1] RSPM
 broom                   1.0.8    2025-03-28 [1] RSPM
 bslib                   0.9.0    2025-01-30 [1] RSPM
 cachem                  1.1.0    2024-05-16 [1] RSPM
 callr                   3.7.6    2024-03-25 [1] RSPM
 checkmate               2.3.2    2024-07-29 [1] RSPM
 chromote                0.5.1    2025-04-24 [1] RSPM
 cli                     3.6.5    2025-04-23 [1] RSPM
 coda                    0.19-4.1 2024-01-31 [1] CRAN (R 4.5.0)
 codetools               0.2-20   2024-03-31 [2] CRAN (R 4.5.0)
 cowplot                 1.2.0    2025-07-07 [1] RSPM
 curl                    6.4.0    2025-06-22 [1] RSPM
 dichromat               2.0-0.1  2022-05-02 [1] CRAN (R 4.5.0)
 digest                  0.6.37   2024-08-19 [1] RSPM
 dplyr                 * 1.1.4    2023-11-17 [1] RSPM
 emmeans                 1.11.1   2025-05-04 [1] RSPM
 estimability            1.5.1    2024-05-12 [1] RSPM
 evaluate                1.0.4    2025-06-18 [1] RSPM
 farver                  2.1.2    2024-05-13 [1] RSPM
 fastmap                 1.2.0    2024-05-15 [1] RSPM
 fontawesome             0.5.3    2024-11-16 [1] RSPM
 forcats                 1.0.0    2023-01-29 [1] RSPM
 formatR                 1.14     2023-01-17 [1] CRAN (R 4.5.0)
 formatters            * 0.5.11   2025-04-09 [1] RSPM
 geepack                 1.3.12   2024-09-23 [1] RSPM
 generics                0.1.4    2025-05-09 [1] RSPM
 ggplot2                 3.5.2    2025-04-09 [1] RSPM
 glue                    1.8.0    2024-09-30 [1] RSPM
 gtable                  0.3.6    2024-10-25 [1] RSPM
 htmltools               0.5.8.1  2024-04-04 [1] RSPM
 htmlwidgets             1.6.4    2023-12-06 [1] RSPM
 httpuv                  1.6.16   2025-04-16 [1] RSPM
 jquerylib               0.1.4    2021-04-26 [1] RSPM
 jsonlite                2.0.0    2025-03-27 [1] RSPM
 knitr                   1.50     2025-03-16 [1] RSPM
 labeling                0.4.3    2023-08-29 [1] RSPM
 later                   1.4.2    2025-04-08 [1] RSPM
 lattice                 0.22-7   2025-04-02 [2] CRAN (R 4.5.0)
 lifecycle               1.0.4    2023-11-07 [1] RSPM
 logger                  0.4.0    2024-10-22 [1] RSPM
 magrittr              * 2.0.3    2022-03-30 [1] RSPM
 MASS                    7.3-65   2025-02-28 [2] CRAN (R 4.5.0)
 Matrix                  1.7-3    2025-03-11 [1] CRAN (R 4.5.0)
 memoise                 2.0.1    2021-11-26 [1] RSPM
 mime                    0.13     2025-03-17 [1] RSPM
 multcomp                1.4-28   2025-01-29 [1] RSPM
 mvtnorm                 1.3-3    2025-01-10 [1] RSPM
 nestcolor               0.1.3    2025-01-21 [1] RSPM
 nlme                    3.1-168  2025-03-31 [2] CRAN (R 4.5.0)
 pillar                  1.11.0   2025-07-04 [1] RSPM
 pkgcache                2.2.4    2025-05-26 [1] RSPM
 pkgconfig               2.0.3    2019-09-22 [1] RSPM
 processx                3.8.6    2025-02-21 [1] RSPM
 promises                1.3.3    2025-05-29 [1] RSPM
 ps                      1.9.1    2025-04-12 [1] RSPM
 purrr                   1.0.4    2025-02-05 [1] RSPM
 R6                      2.6.1    2025-02-15 [1] RSPM
 ragg                    1.4.0    2025-04-10 [1] RSPM
 random.cdisc.data       0.3.16   2024-10-10 [1] RSPM
 rbibutils               2.3      2024-10-04 [1] RSPM
 RColorBrewer            1.1-3    2022-04-03 [1] RSPM
 Rcpp                    1.1.0    2025-07-02 [1] RSPM
 Rdpack                  2.6.4    2025-04-09 [1] RSPM
 rlang                   1.1.6    2025-04-11 [1] RSPM
 rmarkdown               2.29     2024-11-04 [1] RSPM
 rtables               * 0.6.13   2025-06-19 [1] RSPM
 sandwich                3.1-1    2024-09-15 [1] RSPM
 sass                    0.4.10   2025-04-11 [1] RSPM
 scales                  1.4.0    2025-04-24 [1] RSPM
 sessioninfo             1.2.3    2025-02-05 [1] any (@1.2.3)
 shiny                 * 1.11.1   2025-07-03 [1] RSPM
 shinycssloaders         1.1.0    2024-07-30 [1] RSPM
 shinyjs                 2.1.0    2021-12-23 [1] RSPM
 shinyvalidate           0.1.3    2023-10-04 [1] RSPM
 shinyWidgets            0.9.0    2025-02-21 [1] RSPM
 stringi                 1.8.7    2025-03-27 [1] RSPM
 stringr                 1.5.1    2023-11-14 [1] RSPM
 survival                3.8-3    2024-12-17 [2] CRAN (R 4.5.0)
 systemfonts             1.2.3    2025-04-30 [1] RSPM
 teal                  * 0.16.0   2025-02-23 [1] RSPM
 teal.code             * 0.6.1    2025-02-14 [1] RSPM
 teal.data             * 0.7.0    2025-01-28 [1] RSPM
 teal.logger             0.4.0    2025-07-08 [1] RSPM
 teal.modules.clinical * 0.10.0   2025-02-28 [1] RSPM
 teal.reporter           0.4.0    2025-01-24 [1] RSPM
 teal.slice            * 0.6.0    2025-02-03 [1] RSPM
 teal.transform        * 0.6.0    2025-02-12 [1] RSPM
 teal.widgets            0.4.3    2025-01-31 [1] RSPM
 tern                  * 0.9.9    2025-06-20 [1] RSPM
 tern.gee                0.1.5    2024-08-23 [1] RSPM
 testthat                3.2.3    2025-01-13 [1] RSPM
 textshaping             1.0.1    2025-05-01 [1] RSPM
 TH.data                 1.1-3    2025-01-17 [1] RSPM
 tibble                  3.3.0    2025-06-08 [1] RSPM
 tidyr                   1.3.1    2024-01-24 [1] RSPM
 tidyselect              1.2.1    2024-03-11 [1] RSPM
 vctrs                   0.6.5    2023-12-01 [1] RSPM
 webshot                 0.5.5    2023-06-26 [1] CRAN (R 4.5.0)
 webshot2                0.1.2    2025-04-23 [1] RSPM
 websocket               1.4.4    2025-04-10 [1] RSPM
 withr                   3.0.2    2024-10-28 [1] RSPM
 xfun                    0.52     2025-04-02 [1] RSPM
 xtable                  1.8-4    2019-04-21 [1] RSPM
 yaml                    2.3.10   2024-07-26 [1] RSPM
 zoo                     1.8-14   2025-04-10 [1] RSPM

 [1] /usr/local/lib/R/site-library
 [2] /usr/local/lib/R/library
 [3] /github/home/R/x86_64-pc-linux-gnu-library/4.5
 * ── Packages attached to the search path.

──────────────────────────────────────────────────────────────────────────────

.lock file

Download the .lock file and use renv::restore() on it to recreate environment used to generate this website.

Download

MMRMT01
RATET01
Source Code
---
title: ONCT05
subtitle: Objective Response Rate by Subgroup
---

------------------------------------------------------------------------

{{< include ../../_utils/envir_hook.qmd >}}

```{r setup, echo = FALSE, warning = FALSE, message = FALSE}
library(tern)
library(dplyr)

adsl <- random.cdisc.data::cadsl
adrs <- random.cdisc.data::cadrs

# Ensure character variables are converted to factors and empty strings and NAs are explicit missing levels.
adsl <- df_explicit_na(adsl)
adrs <- df_explicit_na(adrs)

adsl <- adsl %>%
  select(STUDYID, USUBJID, ARM, SEX, RACE, STRATA1, STRATA2)

adrs <- adrs %>%
  filter(PARAMCD == "INVET") %>%
  select(STUDYID, USUBJID, PARAMCD, AVALC)

anl <- inner_join(adsl, adrs, by = c("STUDYID", "USUBJID"))
anl_labels <- var_labels(anl)

anl <- anl %>%
  filter(ARM %in% c("A: Drug X", "B: Placebo")) %>%
  mutate(
    # Reorder levels of factor to make the placebo group the reference arm.
    ARM = relevel(ARM, ref = "B: Placebo") %>%
      droplevels()
  ) %>%
  droplevels() %>%
  mutate(rsp = AVALC %in% c("CR", "PR"))

var_labels(anl) <- c(anl_labels, rsp = "Is Response")
```

```{r include = FALSE}
webr_code_labels <- c("setup")
```

{{< include ../../_utils/webr_no_include.qmd >}}

## Output

::::::: panel-tabset
## Standard Table

::: {.panel-tabset .nav-justified group="webr"}
## {{< fa regular file-lines sm fw >}} Preview

```{r variant1, test = list(result_v1 = "result")}
df <- extract_rsp_subgroups(
  variables = list(
    rsp = "rsp",
    arm = "ARM",
    subgroups = c("SEX", "STRATA2")
  ),
  data = anl
)

result <- basic_table() %>%
  tabulate_rsp_subgroups(df, vars = c("n_tot", "n", "n_rsp", "prop", "or", "ci"))

result
```

```{r include = FALSE}
webr_code_labels <- c("variant1")
```

{{< include ../../_utils/webr.qmd >}}
:::

## Table Specifying <br/> Class Variables

::: {.panel-tabset .nav-justified group="webr"}
## {{< fa regular file-lines sm fw >}} Preview

Here, the levels of subgroup variables `SEX` and `STRATA1` are reordered. `STRATA1` is reordered by frequency.

```{r variant2, test = list(result_v2 = "result")}
anl_reorder <- anl %>%
  mutate(
    SEX = forcats::fct_relevel(SEX, "M", "F"),
    STRATA1 = forcats::fct_infreq(STRATA1)
  )

df <- extract_rsp_subgroups(
  variables = list(rsp = "rsp", arm = "ARM", subgroups = c("SEX", "STRATA1")),
  data = anl_reorder
)

result <- basic_table() %>%
  tabulate_rsp_subgroups(df, vars = c("n_tot", "n", "n_rsp", "prop", "or", "ci"))

result
```

```{r include = FALSE}
webr_code_labels <- c("variant2")
```

{{< include ../../_utils/webr.qmd >}}
:::

## Table Selecting Columns <br/> and Changing the Alpha Level

::: {.panel-tabset .nav-justified group="webr"}
## {{< fa regular file-lines sm fw >}} Preview

```{r variant3, test = list(result_v3 = "result")}
df <- extract_rsp_subgroups(
  variables = list(
    rsp = "rsp",
    arm = "ARM",
    subgroups = c("SEX", "STRATA2")
  ),
  data = anl,
  conf_level = 0.9,
  method = "chisq"
)

result <- basic_table() %>%
  tabulate_rsp_subgroups(df, vars = c("n_tot", "n", "n_rsp", "prop", "or", "ci", "pval"))

result
```

```{r include = FALSE}
webr_code_labels <- c("variant3")
```

{{< include ../../_utils/webr.qmd >}}
:::

## Table Setting Values <br/> Indicating Response

::: {.panel-tabset .nav-justified group="webr"}
## {{< fa regular file-lines sm fw >}} Preview

Create a new variable `new_rsp` in `anl` data that uses new criteria for responder.

```{r variant4, test = list(result_v4 = "result")}
anl_new <- anl %>%
  mutate(new_rsp = AVALC == "CR")

df <- extract_rsp_subgroups(
  variables = list(
    rsp = "new_rsp",
    arm = "ARM",
    subgroups = c("SEX", "STRATA2")
  ),
  data = anl_new
)

result <- basic_table() %>%
  tabulate_rsp_subgroups(df, vars = c("n_tot", "n", "n_rsp", "prop", "or", "ci"))

result
```

```{r include = FALSE}
webr_code_labels <- c("variant4")
```

{{< include ../../_utils/webr.qmd >}}
:::

## Data Setup

```{r setup}
#| code-fold: show
```
:::::::

{{< include ../../_utils/save_results.qmd >}}

## `teal` App

::: {.panel-tabset .nav-justified}
## {{< fa regular file-lines fa-sm fa-fw >}} Preview

```{r teal, opts.label = c("skip_if_testing", "app")}
# Use table, embedded in response forest plot module.
library(teal.modules.clinical)

## Data reproducible code
data <- teal_data()
data <- within(data, {
  ADSL <- random.cdisc.data::cadsl
  ADRS <- random.cdisc.data::cadrs

  # Ensure character variables are converted to factors and empty strings and NAs are explicit missing levels.
  ADSL <- df_explicit_na(ADSL)
  ADRS <- df_explicit_na(ADRS)
})
datanames <- c("ADSL", "ADRS")
datanames(data) <- datanames
join_keys(data) <- default_cdisc_join_keys[datanames]

## Reusable Configuration For Modules
ADSL <- data[["ADSL"]]
ADRS <- data[["ADRS"]]
arm_ref_comp <- list(
  ARM = list(
    ref = "B: Placebo",
    comp = c("A: Drug X", "C: Combination")
  ),
  ARMCD = list(
    ref = "ARM B",
    comp = c("ARM A", "ARM C")
  )
)

## Setup App
app <- init(
  data = data,
  modules = modules(
    tm_g_forest_rsp(
      label = "Forest Response",
      dataname = "ADRS",
      arm_var = choices_selected(
        variable_choices(ADSL, c("ARM", "ARMCD")),
        "ARMCD"
      ),
      arm_ref_comp = arm_ref_comp,
      paramcd = choices_selected(
        value_choices(ADRS, "PARAMCD", "PARAM"),
        "BESRSPI"
      ),
      subgroup_var = choices_selected(
        variable_choices(ADSL, names(ADSL)),
        c("SEX")
      ),
      strata_var = choices_selected(
        variable_choices(ADSL, c("STRATA1", "STRATA2")),
        "STRATA2"
      ),
      plot_height = c(600L, 200L, 2000L)
    )
  )
)

shinyApp(app$ui, app$server)
```

{{< include ../../_utils/shinylive.qmd >}}
:::

{{< include ../../repro.qmd >}}

Made with ❤️ by the NEST Team

  • Edit this page
  • Report an issue
Cookie Preferences