TLG Catalog - Stable
  • Stable
    • Dev
  1. Tables
  2. Efficacy
  3. AOVT03
  • Introduction

  • Tables
    • ADA
      • ADAT01
      • ADAT02
      • ADAT03
      • ADAT04A
      • ADAT04B
    • Adverse Events
      • AET01
      • AET01_AESI
      • AET02
      • AET02_SMQ
      • AET03
      • AET04
      • AET04_PI
      • AET05
      • AET05_ALL
      • AET06
      • AET06_SMQ
      • AET07
      • AET09
      • AET09_SMQ
      • AET10
    • Concomitant Medications
      • CMT01
      • CMT01A
      • CMT01B
      • CMT02_PT
    • Deaths
      • DTHT01
    • Demography
      • DMT01
    • Disclosures
      • DISCLOSUREST01
      • EUDRAT01
      • EUDRAT02
    • Disposition
      • DST01
      • PDT01
      • PDT02
    • ECG
      • EGT01
      • EGT02
      • EGT03
      • EGT04
      • EGT05_QTCAT
    • Efficacy
      • AOVT01
      • AOVT02
      • AOVT03
      • CFBT01
      • CMHT01
      • COXT01
      • COXT02
      • DORT01
      • LGRT02
      • MMRMT01
      • ONCT05
      • RATET01
      • RBMIT01
      • RSPT01
      • TTET01
    • Exposure
      • EXT01
    • Lab Results
      • LBT01
      • LBT02
      • LBT03
      • LBT04
      • LBT05
      • LBT06
      • LBT07
      • LBT08
      • LBT09
      • LBT10
      • LBT10_BL
      • LBT11
      • LBT11_BL
      • LBT12
      • LBT12_BL
      • LBT13
      • LBT14
      • LBT15
    • Medical History
      • MHT01
    • Pharmacokinetic
      • PKCT01
      • PKPT02
      • PKPT03
      • PKPT04
      • PKPT05
      • PKPT06
      • PKPT07
      • PKPT08
      • PKPT11
    • Risk Management Plan
      • RMPT01
      • RMPT03
      • RMPT04
      • RMPT05
      • RMPT06
    • Safety
      • ENTXX
    • Vital Signs
      • VST01
      • VST02
  • Listings
    • ADA
      • ADAL02
    • Adverse Events
      • AEL01
      • AEL01_NOLLT
      • AEL02
      • AEL02_ED
      • AEL03
      • AEL04
    • Concomitant Medications
      • CML01
      • CML02A_GL
      • CML02B_GL
    • Development Safety Update Report
      • DSUR4
    • Disposition
      • DSL01
      • DSL02
    • ECG
      • EGL01
    • Efficacy
      • ONCL01
    • Exposure
      • EXL01
    • Lab Results
      • LBL01
      • LBL01_RLS
      • LBL02A
      • LBL02A_RLS
      • LBL02B
    • Medical History
      • MHL01
    • Pharmacokinetic
      • ADAL01
      • PKCL01
      • PKCL02
      • PKPL01
      • PKPL02
      • PKPL04
    • Vital Signs
      • VSL01
  • Graphs
    • Efficacy
      • FSTG01
      • FSTG02
      • KMG01
      • MMRMG01
      • MMRMG02
    • Other
      • BRG01
      • BWG01
      • CIG01
      • IPPG01
      • LTG01
      • MNG01
    • Pharmacokinetic
      • PKCG01
      • PKCG02
      • PKCG03
      • PKPG01
      • PKPG02
      • PKPG03
      • PKPG04
      • PKPG06

  • Appendix
    • Reproducibility

  • Index

On this page

  • Output
  • Reproducibility
    • Timestamp
    • Session Info
    • .lock file
  • Edit this page
  • Report an issue
  1. Tables
  2. Efficacy
  3. AOVT03

AOVT03

ANCOVA with Consideration of Interaction


Output

This example will focus on data from multiple visits and take the interaction between visits and arms into consideration.

  • Standard Table
  • Data Setup
  • Preview
  • Try this using WebR
Code
result <- basic_table(show_colcounts = TRUE) %>%
  split_cols_by("ARMCD", ref_group = "ARM A") %>%
  split_rows_by("PARAM", split_fun = drop_split_levels) %>%
  summarize_ancova(
    vars = "CHG",
    variables = list(arm = "ARMCD", covariates = c("BASE", "AVISIT", "AVISIT*ARMCD")),
    conf_level = 0.95,
    var_labels = "WEEK 1 DAY 8",
    table_names = "WEEK 1 DAY 8",
    interaction_y = "WEEK 1 DAY 8",
    interaction_item = "AVISIT"
  ) %>%
  summarize_ancova(
    vars = "CHG",
    variables = list(arm = "ARMCD", covariates = c("BASE", "AVISIT", "AVISIT*ARMCD")),
    conf_level = 0.95,
    var_labels = "WEEK 2 DAY 15",
    table_names = "WEEK 2 DAY 15",
    interaction_y = "WEEK 2 DAY 15",
    interaction_item = "AVISIT"
  ) %>%
  summarize_ancova(
    vars = "CHG",
    variables = list(arm = "ARMCD", covariates = c("BASE", "AVISIT", "AVISIT*ARMCD")),
    conf_level = 0.95,
    var_labels = "WEEK 5 DAY 36",
    table_names = "WEEK 5 DAY 36",
    interaction_y = "WEEK 5 DAY 36",
    interaction_item = "AVISIT"
  ) %>%
  build_table(adqs_in, alt_counts_df = adsl)

result
                                    ARM A        ARM B           ARM C    
                                   (N=134)      (N=134)         (N=132)   
——————————————————————————————————————————————————————————————————————————
BFI All Questions                                                         
  WEEK 1 DAY 8                                                            
    n                                68           73              62      
    Adjusted Mean                   4.34         5.96            3.90     
    Difference in Adjusted Means                 1.62            -0.44    
      95% CI                                 (-1.75, 4.98)   (-3.94, 3.06)
      p-value                                   0.3460          0.8059    
  WEEK 2 DAY 15                                                           
    n                                68           73              62      
    Adjusted Mean                   12.99        11.23           9.86     
    Difference in Adjusted Means                 -1.76           -3.13    
      95% CI                                 (-5.12, 1.60)   (-6.64, 0.37)
      p-value                                   0.3048          0.0795    
  WEEK 5 DAY 36                                                           
    n                                68           73              62      
    Adjusted Mean                   23.88        23.08           28.21    
    Difference in Adjusted Means                 -0.81           4.33     
      95% CI                                 (-4.17, 2.56)   (0.83, 7.83) 
      p-value                                   0.6383          0.0155    
Fatigue Interference                                                      
  WEEK 1 DAY 8                                                            
    n                                68           73              62      
    Adjusted Mean                   5.97         5.19            5.21     
    Difference in Adjusted Means                 -0.78           -0.76    
      95% CI                                 (-4.17, 2.61)   (-4.30, 2.78)
      p-value                                   0.6522          0.6729    
  WEEK 2 DAY 15                                                           
    n                                68           73              62      
    Adjusted Mean                   11.39        9.42            9.55     
    Difference in Adjusted Means                 -1.96           -1.84    
      95% CI                                 (-5.35, 1.43)   (-5.37, 1.70)
      p-value                                   0.2560          0.3084    
  WEEK 5 DAY 36                                                           
    n                                68           73              62      
    Adjusted Mean                   22.79        25.37           23.43    
    Difference in Adjusted Means                 2.58            0.64     
      95% CI                                 (-0.81, 5.97)   (-2.89, 4.18)
      p-value                                   0.1353          0.7212    
Experimental use!

WebR is a tool allowing you to run R code in the web browser. Modify the code below and click run to see the results. Alternatively, copy the code and click here to open WebR in a new tab.

Code
library(tern)
library(dplyr)

adsl <- random.cdisc.data::cadsl
adqs <- random.cdisc.data::cadqs

adqs_in <- adqs %>%
  filter(AVISIT %in% c("WEEK 1 DAY 8", "WEEK 2 DAY 15", "WEEK 5 DAY 36")) %>%
  droplevels() %>%
  filter(PARAM %in% c("BFI All Questions", "Fatigue Interference")) %>%
  mutate(CHG = ifelse(BMEASIFL == "Y", CHG, NA)) # only analyze evaluable population

Reproducibility

Timestamp

[1] "2025-07-09 17:42:18 UTC"

Session Info

─ Session info ───────────────────────────────────────────────────────────────
 setting  value
 version  R version 4.5.0 (2025-04-11)
 os       Ubuntu 24.04.2 LTS
 system   x86_64, linux-gnu
 ui       X11
 language (EN)
 collate  en_US.UTF-8
 ctype    en_US.UTF-8
 tz       Etc/UTC
 date     2025-07-09
 pandoc   3.7.0.2 @ /usr/bin/ (via rmarkdown)
 quarto   1.7.32 @ /usr/local/bin/quarto

─ Packages ───────────────────────────────────────────────────────────────────
 package           * version  date (UTC) lib source
 backports           1.5.0    2024-05-23 [1] RSPM
 brio                1.1.5    2024-04-24 [1] RSPM
 broom               1.0.8    2025-03-28 [1] RSPM
 checkmate           2.3.2    2024-07-29 [1] RSPM
 cli                 3.6.5    2025-04-23 [1] RSPM
 coda                0.19-4.1 2024-01-31 [1] CRAN (R 4.5.0)
 codetools           0.2-20   2024-03-31 [2] CRAN (R 4.5.0)
 curl                6.4.0    2025-06-22 [1] RSPM
 dichromat           2.0-0.1  2022-05-02 [1] CRAN (R 4.5.0)
 digest              0.6.37   2024-08-19 [1] RSPM
 dplyr             * 1.1.4    2023-11-17 [1] RSPM
 emmeans             1.11.1   2025-05-04 [1] RSPM
 estimability        1.5.1    2024-05-12 [1] RSPM
 evaluate            1.0.4    2025-06-18 [1] RSPM
 farver              2.1.2    2024-05-13 [1] RSPM
 fastmap             1.2.0    2024-05-15 [1] RSPM
 formatters        * 0.5.11   2025-04-09 [1] RSPM
 generics            0.1.4    2025-05-09 [1] RSPM
 ggplot2             3.5.2    2025-04-09 [1] RSPM
 glue                1.8.0    2024-09-30 [1] RSPM
 gtable              0.3.6    2024-10-25 [1] RSPM
 htmltools           0.5.8.1  2024-04-04 [1] RSPM
 htmlwidgets         1.6.4    2023-12-06 [1] RSPM
 jsonlite            2.0.0    2025-03-27 [1] RSPM
 knitr               1.50     2025-03-16 [1] RSPM
 lattice             0.22-7   2025-04-02 [2] CRAN (R 4.5.0)
 lifecycle           1.0.4    2023-11-07 [1] RSPM
 magrittr          * 2.0.3    2022-03-30 [1] RSPM
 MASS                7.3-65   2025-02-28 [2] CRAN (R 4.5.0)
 Matrix              1.7-3    2025-03-11 [1] CRAN (R 4.5.0)
 multcomp            1.4-28   2025-01-29 [1] RSPM
 mvtnorm             1.3-3    2025-01-10 [1] RSPM
 nestcolor           0.1.3    2025-01-21 [1] RSPM
 pillar              1.11.0   2025-07-04 [1] RSPM
 pkgcache            2.2.4    2025-05-26 [1] RSPM
 pkgconfig           2.0.3    2019-09-22 [1] RSPM
 processx            3.8.6    2025-02-21 [1] RSPM
 ps                  1.9.1    2025-04-12 [1] RSPM
 purrr               1.0.4    2025-02-05 [1] RSPM
 R6                  2.6.1    2025-02-15 [1] RSPM
 random.cdisc.data   0.3.16   2024-10-10 [1] RSPM
 rbibutils           2.3      2024-10-04 [1] RSPM
 RColorBrewer        1.1-3    2022-04-03 [1] RSPM
 Rdpack              2.6.4    2025-04-09 [1] RSPM
 rlang               1.1.6    2025-04-11 [1] RSPM
 rmarkdown           2.29     2024-11-04 [1] RSPM
 rtables           * 0.6.13   2025-06-19 [1] RSPM
 sandwich            3.1-1    2024-09-15 [1] RSPM
 scales              1.4.0    2025-04-24 [1] RSPM
 sessioninfo         1.2.3    2025-02-05 [1] any (@1.2.3)
 stringi             1.8.7    2025-03-27 [1] RSPM
 stringr             1.5.1    2023-11-14 [1] RSPM
 survival            3.8-3    2024-12-17 [2] CRAN (R 4.5.0)
 tern              * 0.9.9    2025-06-20 [1] RSPM
 testthat            3.2.3    2025-01-13 [1] RSPM
 TH.data             1.1-3    2025-01-17 [1] RSPM
 tibble              3.3.0    2025-06-08 [1] RSPM
 tidyr               1.3.1    2024-01-24 [1] RSPM
 tidyselect          1.2.1    2024-03-11 [1] RSPM
 vctrs               0.6.5    2023-12-01 [1] RSPM
 xfun                0.52     2025-04-02 [1] RSPM
 xtable              1.8-4    2019-04-21 [1] RSPM
 yaml                2.3.10   2024-07-26 [1] RSPM
 zoo                 1.8-14   2025-04-10 [1] RSPM

 [1] /usr/local/lib/R/site-library
 [2] /usr/local/lib/R/library
 [3] /github/home/R/x86_64-pc-linux-gnu-library/4.5
 * ── Packages attached to the search path.

──────────────────────────────────────────────────────────────────────────────

.lock file

Download the .lock file and use renv::restore() on it to recreate environment used to generate this website.

Download

AOVT02
CFBT01
Source Code
---
title: AOVT03
subtitle: ANCOVA with Consideration of Interaction
---

------------------------------------------------------------------------

{{< include ../../_utils/envir_hook.qmd >}}

```{r setup, echo = FALSE, warning = FALSE, message = FALSE}
library(tern)
library(dplyr)

adsl <- random.cdisc.data::cadsl
adqs <- random.cdisc.data::cadqs

adqs_in <- adqs %>%
  filter(AVISIT %in% c("WEEK 1 DAY 8", "WEEK 2 DAY 15", "WEEK 5 DAY 36")) %>%
  droplevels() %>%
  filter(PARAM %in% c("BFI All Questions", "Fatigue Interference")) %>%
  mutate(CHG = ifelse(BMEASIFL == "Y", CHG, NA)) # only analyze evaluable population
```

```{r include = FALSE}
webr_code_labels <- c("setup")
```

{{< include ../../_utils/webr_no_include.qmd >}}

## Output

This example will focus on data from multiple visits and take the interaction between visits and arms into consideration.

:::: panel-tabset
## Standard Table

::: {.panel-tabset .nav-justified group="webr"}
## {{< fa regular file-lines sm fw >}} Preview

```{r variant1, test = list(result_v1 = "result")}
result <- basic_table(show_colcounts = TRUE) %>%
  split_cols_by("ARMCD", ref_group = "ARM A") %>%
  split_rows_by("PARAM", split_fun = drop_split_levels) %>%
  summarize_ancova(
    vars = "CHG",
    variables = list(arm = "ARMCD", covariates = c("BASE", "AVISIT", "AVISIT*ARMCD")),
    conf_level = 0.95,
    var_labels = "WEEK 1 DAY 8",
    table_names = "WEEK 1 DAY 8",
    interaction_y = "WEEK 1 DAY 8",
    interaction_item = "AVISIT"
  ) %>%
  summarize_ancova(
    vars = "CHG",
    variables = list(arm = "ARMCD", covariates = c("BASE", "AVISIT", "AVISIT*ARMCD")),
    conf_level = 0.95,
    var_labels = "WEEK 2 DAY 15",
    table_names = "WEEK 2 DAY 15",
    interaction_y = "WEEK 2 DAY 15",
    interaction_item = "AVISIT"
  ) %>%
  summarize_ancova(
    vars = "CHG",
    variables = list(arm = "ARMCD", covariates = c("BASE", "AVISIT", "AVISIT*ARMCD")),
    conf_level = 0.95,
    var_labels = "WEEK 5 DAY 36",
    table_names = "WEEK 5 DAY 36",
    interaction_y = "WEEK 5 DAY 36",
    interaction_item = "AVISIT"
  ) %>%
  build_table(adqs_in, alt_counts_df = adsl)

result
```

```{r include = FALSE}
webr_code_labels <- c("variant1")
```

{{< include ../../_utils/webr.qmd >}}
:::

## Data Setup

```{r setup}
#| code-fold: show
```
::::

{{< include ../../_utils/save_results.qmd >}}

{{< include ../../repro.qmd >}}

Made with ❤️ by the NEST Team

  • Edit this page
  • Report an issue
Cookie Preferences