TLG Catalog - Stable
  • Stable
    • Dev
  1. Graphs
  2. Other
  3. LTG01
  • Introduction

  • Tables
    • ADA
      • ADAT01
      • ADAT02
      • ADAT03
      • ADAT04A
      • ADAT04B
    • Adverse Events
      • AET01
      • AET01_AESI
      • AET02
      • AET02_SMQ
      • AET03
      • AET04
      • AET04_PI
      • AET05
      • AET05_ALL
      • AET06
      • AET06_SMQ
      • AET07
      • AET09
      • AET09_SMQ
      • AET10
    • Concomitant Medications
      • CMT01
      • CMT01A
      • CMT01B
      • CMT02_PT
    • Deaths
      • DTHT01
    • Demography
      • DMT01
    • Disclosures
      • DISCLOSUREST01
      • EUDRAT01
      • EUDRAT02
    • Disposition
      • DST01
      • PDT01
      • PDT02
    • ECG
      • EGT01
      • EGT02
      • EGT03
      • EGT04
      • EGT05_QTCAT
    • Efficacy
      • AOVT01
      • AOVT02
      • AOVT03
      • CFBT01
      • CMHT01
      • COXT01
      • COXT02
      • DORT01
      • LGRT02
      • MMRMT01
      • ONCT05
      • RATET01
      • RBMIT01
      • RSPT01
      • TTET01
    • Exposure
      • EXT01
    • Lab Results
      • LBT01
      • LBT02
      • LBT03
      • LBT04
      • LBT05
      • LBT06
      • LBT07
      • LBT08
      • LBT09
      • LBT10
      • LBT10_BL
      • LBT11
      • LBT11_BL
      • LBT12
      • LBT12_BL
      • LBT13
      • LBT14
      • LBT15
    • Medical History
      • MHT01
    • Pharmacokinetic
      • PKCT01
      • PKPT02
      • PKPT03
      • PKPT04
      • PKPT05
      • PKPT06
      • PKPT07
      • PKPT08
      • PKPT11
    • Risk Management Plan
      • RMPT01
      • RMPT03
      • RMPT04
      • RMPT05
      • RMPT06
    • Safety
      • ENTXX
    • Vital Signs
      • VST01
      • VST02
  • Listings
    • ADA
      • ADAL02
    • Adverse Events
      • AEL01
      • AEL01_NOLLT
      • AEL02
      • AEL02_ED
      • AEL03
      • AEL04
    • Concomitant Medications
      • CML01
      • CML02A_GL
      • CML02B_GL
    • Development Safety Update Report
      • DSUR4
    • Disposition
      • DSL01
      • DSL02
    • ECG
      • EGL01
    • Efficacy
      • ONCL01
    • Exposure
      • EXL01
    • Lab Results
      • LBL01
      • LBL01_RLS
      • LBL02A
      • LBL02A_RLS
      • LBL02B
    • Medical History
      • MHL01
    • Pharmacokinetic
      • ADAL01
      • PKCL01
      • PKCL02
      • PKPL01
      • PKPL02
      • PKPL04
    • Vital Signs
      • VSL01
  • Graphs
    • Efficacy
      • FSTG01
      • FSTG02
      • KMG01
      • MMRMG01
      • MMRMG02
    • Other
      • BRG01
      • BWG01
      • CIG01
      • IPPG01
      • LTG01
      • MNG01
    • Pharmacokinetic
      • PKCG01
      • PKCG02
      • PKCG03
      • PKPG01
      • PKPG02
      • PKPG03
      • PKPG04
      • PKPG06

  • Appendix
    • Reproducibility

  • Index

On this page

  • Output
  • Reproducibility
    • Timestamp
    • Session Info
    • .lock file
  • Edit this page
  • Report an issue
  1. Graphs
  2. Other
  3. LTG01

LTG01

Lattice Plot of Laboratory Tests by Treatment Group Over Time


Lattice plots are natively handled by R, the examples below rely mostly on the package ggplot2.

Output

  • Plot of Liver Function Tests
  • Plot of Liver Function Tests
    Including Mean, Median, and 95% CIs
  • Data Setup

Basic Plot

  • Preview
  • Try this using WebR
Code
# General mapping and "lattice" ("facet" in ggplot2 nomenclature).
g1 <- {
  ggplot(
    data = adlb,
    mapping = aes(x = AVISIT, y = AVAL, colour = SUBJID, shape = SUBJID)
  ) +
    facet_grid(LBTESTCD ~ ARM, scales = "free_y") +
    scale_shape_manual(values = pch)
}

# Add points and lines.
g1 <- g1 + geom_point()
g1 <- g1 + geom_line()
plot <- g1
plot

Experimental use!

WebR is a tool allowing you to run R code in the web browser. Modify the code below and click run to see the results. Alternatively, copy the code and click here to open WebR in a new tab.

Modifying Facets

  • Preview
  • Try this using WebR

The units describing rows of panes and the number of patients under each arm is specified by modifying facet_grid():

Code
# Include the units and the sample size N.
g2 <- g1 + facet_grid(
  paste0(LBTESTCD, "\n(", AVALU, ")") ~ ARM_N,
  scales = "free_y"
)

plot <- g2
plot

Experimental use!

WebR is a tool allowing you to run R code in the web browser. Modify the code below and click run to see the results. Alternatively, copy the code and click here to open WebR in a new tab.

Modifying X-Axis

  • Preview
  • Try this using WebR

The graphic elements are modified through usual ggplot2 functions. For instance, the x-axis could be improved as follows:

Code
g3 <- g2 + theme(
  axis.text.x = element_text(angle = 45, hjust = 1),
  axis.title = element_blank()
) + scale_x_continuous(breaks = adlb$AVISIT, labels = adlb$AVISIT_txt)

plot <- g3
plot

Experimental use!

WebR is a tool allowing you to run R code in the web browser. Modify the code below and click run to see the results. Alternatively, copy the code and click here to open WebR in a new tab.

The functions stat_mean_ci and stat_median_ci from the tern package allow the addition of mean and/or median confidence intervals. The example below suggests a larger dataset, where the individual subject legend may not be relevant but the mean or the median are of special interest.

Pre-Processing

Code
# Datasets
adsl <- random.cdisc.data::cadsl %>% slice(1:40)
adlb <- random.cdisc.data::cadlb %>% filter(USUBJID %in% adsl$USUBJID)

# Pre-processing
adlb$AVISIT_txt <- adlb$AVISIT
adlb$AVISIT <- as.numeric(adlb$AVISIT)
adlb$ARM_N <- adlb$ARM
levels(adlb$ARM_N) <- with(
  data = adlb,
  paste0(
    levels(ARM_N), " (N = ",
    tapply(SUBJID, ARM_N, function(x) length(unique(x))), ")"
  )
)

# Plot utils
npch <- 1:25
npatients <- length(unique(adlb$SUBJID))
pch <- c(
  rep(npch, times = npatients %/% length(npch)),
  npch[1:(npatients %% length(npch))]
)

Basic Plot

  • Preview
  • Try this using WebR
Code
# General mapping and "lattice" ("facet" in ggplot2 nomenclature)
g4 <- {
  ggplot(
    data = adlb,
    mapping = aes(x = AVISIT, y = AVAL, colour = SUBJID, shape = SUBJID)
  ) +
    facet_grid(LBTESTCD ~ ARM_N, scales = "free_y") +
    scale_shape_manual(values = pch) +
    scale_color_manual(values = rep(getOption("ggplot2.discrete.colour"), 2))
}

# Add points and lines.
# Note that with so many patients, legend might not be useful and transparency
#   is advisable.
g4 <- g4 + geom_point(alpha = .3)
g4 <- g4 + geom_line(alpha = .3)
g4 <- g4 + guides(colour = "none", shape = "none")
g4 <- g4 + theme(
  axis.text.x = element_text(angle = 45, hjust = 1),
  axis.title  = element_blank()
)
g4 <- g4 + scale_x_continuous(breaks = adlb$AVISIT, labels = adlb$AVISIT_txt)
plot <- g4
plot

Experimental use!

WebR is a tool allowing you to run R code in the web browser. Modify the code below and click run to see the results. Alternatively, copy the code and click here to open WebR in a new tab.

Adding Mean

  • Preview
  • Try this using WebR
Code
# Add the mean along with the 95% CI at every visit.
g51 <- g4 + stat_summary(
  fun = mean, linewidth = 1, geom = "line",
  aes(group = 1, linetype = "Mean +/- 95% CI")
)
g51 <- g51 + stat_summary(
  fun.data = tern::stat_mean_ci, geom = "errorbar",
  aes(group = 1, linetype = "Mean +/- 95% CI")
)
plot <- g51 + guides(linetype = guide_legend(title = NULL))
plot

Experimental use!

WebR is a tool allowing you to run R code in the web browser. Modify the code below and click run to see the results. Alternatively, copy the code and click here to open WebR in a new tab.

Adding Median

  • Preview
  • Try this using WebR
Code
# Instead of a mean, the median could be more relevant.
g52 <- g51 + stat_summary(
  fun = median, linewidth = 1, geom = "line",
  aes(group = 1, linetype = "Median +/- 95% CI")
)
g52 <- g52 + stat_summary(
  fun.data = tern::stat_median_ci, geom = "errorbar",
  aes(group = 1, linetype = "Median +/- 95% CI")
)
plot <- g52 + guides(linetype = guide_legend(title = "Aggregate"))
plot

Experimental use!

WebR is a tool allowing you to run R code in the web browser. Modify the code below and click run to see the results. Alternatively, copy the code and click here to open WebR in a new tab.

Changing Confidence Level

  • Preview
  • Try this using WebR
Code
# Change the confidence level of interval for the median.
# Note: check `?stat_mean_ci()` and `?stat_median_ci()` for further fine tuning.
g53 <- g4 + stat_summary(
  fun = median, linewidth = 1, geom = "line",
  aes(group = 1, linetype = "Median +/- 80% CI")
)
g53 <- g53 + stat_summary(
  fun.data = function(x) tern::stat_median_ci(x, conf_level = 0.8),
  geom = "errorbar", aes(group = 1, linetype = "Median +/- 80% CI")
)
plot <- g53 + guides(linetype = guide_legend(title = NULL))
plot

Experimental use!

WebR is a tool allowing you to run R code in the web browser. Modify the code below and click run to see the results. Alternatively, copy the code and click here to open WebR in a new tab.

Code
library(tern)
library(teal.modules.clinical)
library(ggplot2)
library(dplyr)
library(nestcolor)

# Datasets
adsl <- random.cdisc.data::cadsl %>% slice(1:8)
adlb <- random.cdisc.data::cadlb %>% filter(USUBJID %in% adsl$USUBJID)

# Pre-processing
adlb$AVISIT_txt <- adlb$AVISIT
adlb$AVISIT <- as.numeric(adlb$AVISIT)
adlb$ARM_N <- adlb$ARM
levels(adlb$ARM_N) <- with(
  data = adlb,
  paste0(
    levels(ARM_N), " (N = ",
    tapply(SUBJID, ARM_N, function(x) length(unique(x))), ")"
  )
)

# Plot utils
npch <- 1:25
npatients <- length(unique(adlb$SUBJID))
pch <- c(
  rep(npch, times = npatients %/% length(npch)),
  npch[1:(npatients %% length(npch))]
)

Reproducibility

Timestamp

[1] "2025-07-05 18:01:43 UTC"

Session Info

─ Session info ───────────────────────────────────────────────────────────────
 setting  value
 version  R version 4.5.0 (2025-04-11)
 os       Ubuntu 24.04.2 LTS
 system   x86_64, linux-gnu
 ui       X11
 language (EN)
 collate  en_US.UTF-8
 ctype    en_US.UTF-8
 tz       Etc/UTC
 date     2025-07-05
 pandoc   3.7.0.2 @ /usr/bin/ (via rmarkdown)
 quarto   1.7.32 @ /usr/local/bin/quarto

─ Packages ───────────────────────────────────────────────────────────────────
 package               * version  date (UTC) lib source
 backports               1.5.0    2024-05-23 [1] RSPM
 brio                    1.1.5    2024-04-24 [1] RSPM
 broom                   1.0.8    2025-03-28 [1] RSPM
 checkmate               2.3.2    2024-07-29 [1] RSPM
 cli                     3.6.5    2025-04-23 [1] RSPM
 coda                    0.19-4.1 2024-01-31 [1] CRAN (R 4.5.0)
 codetools               0.2-20   2024-03-31 [2] CRAN (R 4.5.0)
 curl                    6.4.0    2025-06-22 [1] RSPM
 dichromat               2.0-0.1  2022-05-02 [1] CRAN (R 4.5.0)
 digest                  0.6.37   2024-08-19 [1] RSPM
 dplyr                 * 1.1.4    2023-11-17 [1] RSPM
 emmeans                 1.11.1   2025-05-04 [1] RSPM
 estimability            1.5.1    2024-05-12 [1] RSPM
 evaluate                1.0.4    2025-06-18 [1] RSPM
 farver                  2.1.2    2024-05-13 [1] RSPM
 fastmap                 1.2.0    2024-05-15 [1] RSPM
 formatters            * 0.5.11   2025-04-09 [1] RSPM
 geepack                 1.3.12   2024-09-23 [1] RSPM
 generics                0.1.4    2025-05-09 [1] RSPM
 ggplot2               * 3.5.2    2025-04-09 [1] RSPM
 glue                    1.8.0    2024-09-30 [1] RSPM
 gtable                  0.3.6    2024-10-25 [1] RSPM
 htmltools               0.5.8.1  2024-04-04 [1] RSPM
 htmlwidgets             1.6.4    2023-12-06 [1] RSPM
 httpuv                  1.6.16   2025-04-16 [1] RSPM
 jsonlite                2.0.0    2025-03-27 [1] RSPM
 knitr                   1.50     2025-03-16 [1] RSPM
 labeling                0.4.3    2023-08-29 [1] RSPM
 later                   1.4.2    2025-04-08 [1] RSPM
 lattice                 0.22-7   2025-04-02 [2] CRAN (R 4.5.0)
 lifecycle               1.0.4    2023-11-07 [1] RSPM
 logger                  0.4.0    2024-10-22 [1] RSPM
 magrittr              * 2.0.3    2022-03-30 [1] RSPM
 MASS                    7.3-65   2025-02-28 [2] CRAN (R 4.5.0)
 Matrix                  1.7-3    2025-03-11 [1] CRAN (R 4.5.0)
 mime                    0.13     2025-03-17 [1] RSPM
 multcomp                1.4-28   2025-01-29 [1] RSPM
 mvtnorm                 1.3-3    2025-01-10 [1] RSPM
 nestcolor             * 0.1.3    2025-01-21 [1] RSPM
 nlme                    3.1-168  2025-03-31 [2] CRAN (R 4.5.0)
 pillar                  1.11.0   2025-07-04 [1] RSPM
 pkgcache                2.2.4    2025-05-26 [1] RSPM
 pkgconfig               2.0.3    2019-09-22 [1] RSPM
 processx                3.8.6    2025-02-21 [1] RSPM
 promises                1.3.3    2025-05-29 [1] RSPM
 ps                      1.9.1    2025-04-12 [1] RSPM
 purrr                   1.0.4    2025-02-05 [1] RSPM
 R6                      2.6.1    2025-02-15 [1] RSPM
 random.cdisc.data       0.3.16   2024-10-10 [1] RSPM
 rbibutils               2.3      2024-10-04 [1] RSPM
 RColorBrewer            1.1-3    2022-04-03 [1] RSPM
 Rcpp                    1.1.0    2025-07-02 [1] RSPM
 Rdpack                  2.6.4    2025-04-09 [1] RSPM
 rlang                   1.1.6    2025-04-11 [1] RSPM
 rmarkdown               2.29     2024-11-04 [1] RSPM
 rtables               * 0.6.13   2025-06-19 [1] RSPM
 sandwich                3.1-1    2024-09-15 [1] RSPM
 scales                  1.4.0    2025-04-24 [1] RSPM
 sessioninfo             1.2.3    2025-02-05 [1] any (@1.2.3)
 shiny                 * 1.11.1   2025-07-03 [1] RSPM
 stringi                 1.8.7    2025-03-27 [1] RSPM
 stringr                 1.5.1    2023-11-14 [1] RSPM
 survival                3.8-3    2024-12-17 [2] CRAN (R 4.5.0)
 teal                  * 0.16.0   2025-02-23 [1] RSPM
 teal.code             * 0.6.1    2025-02-14 [1] RSPM
 teal.data             * 0.7.0    2025-01-28 [1] RSPM
 teal.logger             0.3.2    2025-02-14 [1] RSPM
 teal.modules.clinical * 0.10.0   2025-02-28 [1] RSPM
 teal.slice            * 0.6.0    2025-02-03 [1] RSPM
 teal.transform        * 0.6.0    2025-02-12 [1] RSPM
 tern                  * 0.9.9    2025-06-20 [1] RSPM
 tern.gee                0.1.5    2024-08-23 [1] RSPM
 testthat                3.2.3    2025-01-13 [1] RSPM
 TH.data                 1.1-3    2025-01-17 [1] RSPM
 tibble                  3.3.0    2025-06-08 [1] RSPM
 tidyr                   1.3.1    2024-01-24 [1] RSPM
 tidyselect              1.2.1    2024-03-11 [1] RSPM
 vctrs                   0.6.5    2023-12-01 [1] RSPM
 withr                   3.0.2    2024-10-28 [1] RSPM
 xfun                    0.52     2025-04-02 [1] RSPM
 xtable                  1.8-4    2019-04-21 [1] RSPM
 yaml                    2.3.10   2024-07-26 [1] RSPM
 zoo                     1.8-14   2025-04-10 [1] RSPM

 [1] /usr/local/lib/R/site-library
 [2] /usr/local/lib/R/library
 [3] /github/home/R/x86_64-pc-linux-gnu-library/4.5
 * ── Packages attached to the search path.

──────────────────────────────────────────────────────────────────────────────

.lock file

Download the .lock file and use renv::restore() on it to recreate environment used to generate this website.

Download

IPPG01
MNG01
Source Code
---
title: LTG01
subtitle: Lattice Plot of Laboratory Tests by Treatment Group Over Time
---

------------------------------------------------------------------------

{{< include ../../_utils/envir_hook.qmd >}}

Lattice plots are natively handled by R, the examples below rely mostly on the package `ggplot2`.

```{r setup, echo = FALSE, warning = FALSE, message = FALSE}
library(tern)
library(teal.modules.clinical)
library(ggplot2)
library(dplyr)
library(nestcolor)

# Datasets
adsl <- random.cdisc.data::cadsl %>% slice(1:8)
adlb <- random.cdisc.data::cadlb %>% filter(USUBJID %in% adsl$USUBJID)

# Pre-processing
adlb$AVISIT_txt <- adlb$AVISIT
adlb$AVISIT <- as.numeric(adlb$AVISIT)
adlb$ARM_N <- adlb$ARM
levels(adlb$ARM_N) <- with(
  data = adlb,
  paste0(
    levels(ARM_N), " (N = ",
    tapply(SUBJID, ARM_N, function(x) length(unique(x))), ")"
  )
)

# Plot utils
npch <- 1:25
npatients <- length(unique(adlb$SUBJID))
pch <- c(
  rep(npch, times = npatients %/% length(npch)),
  npch[1:(npatients %% length(npch))]
)
```

```{r include = FALSE}
webr_code_labels <- c("setup")
```

{{< include ../../_utils/webr_no_include.qmd >}}

## Output

:::::::::: panel-tabset
## Plot of Liver Function Tests

#### Basic Plot

::: {.panel-tabset .nav-justified group="webr"}
## {{< fa regular file-lines sm fw >}} Preview

```{r plot1, test = list(plot_v1 = "plot")}
# General mapping and "lattice" ("facet" in ggplot2 nomenclature).
g1 <- {
  ggplot(
    data = adlb,
    mapping = aes(x = AVISIT, y = AVAL, colour = SUBJID, shape = SUBJID)
  ) +
    facet_grid(LBTESTCD ~ ARM, scales = "free_y") +
    scale_shape_manual(values = pch)
}

# Add points and lines.
g1 <- g1 + geom_point()
g1 <- g1 + geom_line()
plot <- g1
plot
```

```{r include = FALSE}
webr_code_labels <- c("plot1")
```

{{< include ../../_utils/webr.qmd >}}
:::

#### Modifying Facets

::: {.panel-tabset .nav-justified group="webr"}
## {{< fa regular file-lines sm fw >}} Preview

The units describing rows of panes and the number of patients under each arm is specified by modifying `facet_grid()`:

```{r plot2, test = list(plot_v2 = "plot")}
# Include the units and the sample size N.
g2 <- g1 + facet_grid(
  paste0(LBTESTCD, "\n(", AVALU, ")") ~ ARM_N,
  scales = "free_y"
)

plot <- g2
plot
```

```{r include = FALSE}
webr_code_labels <- c("plot2")
```

{{< include ../../_utils/webr.qmd >}}
:::

#### Modifying X-Axis

::: {.panel-tabset .nav-justified group="webr"}
## {{< fa regular file-lines sm fw >}} Preview

The graphic elements are modified through usual `ggplot2` functions. For instance, the x-axis could be improved as follows:

```{r plot3, test = list(plot_v3 = "g3")}
g3 <- g2 + theme(
  axis.text.x = element_text(angle = 45, hjust = 1),
  axis.title = element_blank()
) + scale_x_continuous(breaks = adlb$AVISIT, labels = adlb$AVISIT_txt)

plot <- g3
plot
```

```{r include = FALSE}
webr_code_labels <- c("plot3")
```

{{< include ../../_utils/webr.qmd >}}
:::

## Plot of Liver Function Tests <br/> Including Mean, Median, and 95% CIs

The functions `stat_mean_ci` and `stat_median_ci` from the `tern` package allow the addition of mean and/or median confidence intervals. The example below suggests a larger dataset, where the individual subject legend may not be relevant but the mean or the median are of special interest.

#### Pre-Processing

```{r pre-processing}
#| code-fold: show

# Datasets
adsl <- random.cdisc.data::cadsl %>% slice(1:40)
adlb <- random.cdisc.data::cadlb %>% filter(USUBJID %in% adsl$USUBJID)

# Pre-processing
adlb$AVISIT_txt <- adlb$AVISIT
adlb$AVISIT <- as.numeric(adlb$AVISIT)
adlb$ARM_N <- adlb$ARM
levels(adlb$ARM_N) <- with(
  data = adlb,
  paste0(
    levels(ARM_N), " (N = ",
    tapply(SUBJID, ARM_N, function(x) length(unique(x))), ")"
  )
)

# Plot utils
npch <- 1:25
npatients <- length(unique(adlb$SUBJID))
pch <- c(
  rep(npch, times = npatients %/% length(npch)),
  npch[1:(npatients %% length(npch))]
)
```

```{r include = FALSE}
webr_code_labels <- c("pre-processing")
```

{{< include ../../_utils/webr_no_include.qmd >}}

#### Basic Plot

::: {.panel-tabset .nav-justified group="webr"}
## {{< fa regular file-lines sm fw >}} Preview

```{r plot4, test = list(plot_v4 = "plot")}
# General mapping and "lattice" ("facet" in ggplot2 nomenclature)
g4 <- {
  ggplot(
    data = adlb,
    mapping = aes(x = AVISIT, y = AVAL, colour = SUBJID, shape = SUBJID)
  ) +
    facet_grid(LBTESTCD ~ ARM_N, scales = "free_y") +
    scale_shape_manual(values = pch) +
    scale_color_manual(values = rep(getOption("ggplot2.discrete.colour"), 2))
}

# Add points and lines.
# Note that with so many patients, legend might not be useful and transparency
#   is advisable.
g4 <- g4 + geom_point(alpha = .3)
g4 <- g4 + geom_line(alpha = .3)
g4 <- g4 + guides(colour = "none", shape = "none")
g4 <- g4 + theme(
  axis.text.x = element_text(angle = 45, hjust = 1),
  axis.title  = element_blank()
)
g4 <- g4 + scale_x_continuous(breaks = adlb$AVISIT, labels = adlb$AVISIT_txt)
plot <- g4
plot
```

```{r include = FALSE}
webr_code_labels <- c("plot4")
```

{{< include ../../_utils/webr.qmd >}}
:::

#### Adding Mean

::: {.panel-tabset .nav-justified group="webr"}
## {{< fa regular file-lines sm fw >}} Preview

```{r plot51, test = list(plot_v51 = "plot")}
# Add the mean along with the 95% CI at every visit.
g51 <- g4 + stat_summary(
  fun = mean, linewidth = 1, geom = "line",
  aes(group = 1, linetype = "Mean +/- 95% CI")
)
g51 <- g51 + stat_summary(
  fun.data = tern::stat_mean_ci, geom = "errorbar",
  aes(group = 1, linetype = "Mean +/- 95% CI")
)
plot <- g51 + guides(linetype = guide_legend(title = NULL))
plot
```

```{r include = FALSE}
webr_code_labels <- c("plot51")
```

{{< include ../../_utils/webr.qmd >}}
:::

#### Adding Median

::: {.panel-tabset .nav-justified group="webr"}
## {{< fa regular file-lines sm fw >}} Preview

```{r plot52, test = list(plot_v52 = "plot")}
# Instead of a mean, the median could be more relevant.
g52 <- g51 + stat_summary(
  fun = median, linewidth = 1, geom = "line",
  aes(group = 1, linetype = "Median +/- 95% CI")
)
g52 <- g52 + stat_summary(
  fun.data = tern::stat_median_ci, geom = "errorbar",
  aes(group = 1, linetype = "Median +/- 95% CI")
)
plot <- g52 + guides(linetype = guide_legend(title = "Aggregate"))
plot
```

```{r include = FALSE}
webr_code_labels <- c("plot52")
```

{{< include ../../_utils/webr.qmd >}}
:::

#### Changing Confidence Level

::: {.panel-tabset .nav-justified group="webr"}
## {{< fa regular file-lines sm fw >}} Preview

```{r plot53, test = list(plot_v53 = "plot")}
# Change the confidence level of interval for the median.
# Note: check `?stat_mean_ci()` and `?stat_median_ci()` for further fine tuning.
g53 <- g4 + stat_summary(
  fun = median, linewidth = 1, geom = "line",
  aes(group = 1, linetype = "Median +/- 80% CI")
)
g53 <- g53 + stat_summary(
  fun.data = function(x) tern::stat_median_ci(x, conf_level = 0.8),
  geom = "errorbar", aes(group = 1, linetype = "Median +/- 80% CI")
)
plot <- g53 + guides(linetype = guide_legend(title = NULL))
plot
```

```{r include = FALSE}
webr_code_labels <- c("plot53")
```

{{< include ../../_utils/webr.qmd >}}
:::

## Data Setup

```{r setup}
#| code-fold: show
```
::::::::::

{{< include ../../_utils/save_results.qmd >}}

{{< include ../../repro.qmd >}}

Made with ❤️ by the NEST Team

  • Edit this page
  • Report an issue
Cookie Preferences