RNAG6
RNAseq Barplot
This page can be used as a template of how to use the available hermes
functions to produce a barplot of the dichotomized gene expression counts into two or three categories based on custom defined percentiles.
The draw_barplot()
function used below needs HermesData
as input. See RNAG1 for details on how to import, filter and normalize HermesData
.
We can create a barplot for gene expression counts of single genes by specifying a gene in the gene_spec
(gene specification) as follows. This function creates a scatterplot with the default percentiles (0.33, 0.67), to specify custom percentiles, please use the percentile
argument.
We can also specify a gene summary function for multiple genes, thereby using the corresponding gene signature. Note that here we just want to use the first 3 genes from the object
without explicitly specifying the gene IDs, and this can be done through the genes()
function in hermes
.
It is also possible to pass additional arguments to the function draw_barplot()
, ex. if we wish to specify an optional faceting variable or optional fill variable. See ?hermes::draw_barplot()
for details about the additional parameters available.
Code
We start by importing a MultiAssayExperiment
; here we use the example multi_assay_experiment
available in hermes
. It is wrapped as a teal::dataset
. We can then use the provided teal module tm_g_barplot
to have add a barplot module in our teal app.
Code
[INFO] 2024-09-14 17:30:45.9351 pid:4552 token:[] teal.modules.hermes Initializing tm_g_barplot
[INFO] 2024-09-14 17:30:47.4320 pid:4552 token:[5971e78a] teal Initializing reporter_previewer_module
Warning: 'experiments' dropped; see 'drops()'
R version 4.4.1 (2024-06-14)
Platform: x86_64-pc-linux-gnu
Running under: Ubuntu 22.04.4 LTS
Matrix products: default
BLAS: /usr/lib/x86_64-linux-gnu/openblas-pthread/libblas.so.3
LAPACK: /usr/lib/x86_64-linux-gnu/openblas-pthread/libopenblasp-r0.3.20.so; LAPACK version 3.10.0
locale:
[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
[3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8
[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
[7] LC_PAPER=en_US.UTF-8 LC_NAME=C
[9] LC_ADDRESS=C LC_TELEPHONE=C
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
time zone: Etc/UTC
tzcode source: system (glibc)
attached base packages:
[1] stats4 stats graphics grDevices utils datasets methods
[8] base
other attached packages:
[1] teal.modules.hermes_0.1.6 teal_0.15.2
[3] teal.slice_0.5.1 teal.data_0.6.0
[5] teal.code_0.5.0 shiny_1.9.1
[7] hermes_1.8.1 SummarizedExperiment_1.34.0
[9] Biobase_2.64.0 GenomicRanges_1.56.1
[11] GenomeInfoDb_1.40.1 IRanges_2.38.1
[13] S4Vectors_0.42.1 BiocGenerics_0.50.0
[15] MatrixGenerics_1.16.0 matrixStats_1.4.1
[17] ggfortify_0.4.17 ggplot2_3.5.1
loaded via a namespace (and not attached):
[1] RColorBrewer_1.1-3 jsonlite_1.8.8
[3] shape_1.4.6.1 MultiAssayExperiment_1.30.3
[5] magrittr_2.0.3 farver_2.1.2
[7] rmarkdown_2.28 GlobalOptions_0.1.2
[9] zlibbioc_1.50.0 vctrs_0.6.5
[11] memoise_2.0.1 webshot_0.5.5
[13] BiocBaseUtils_1.7.3 htmltools_0.5.8.1
[15] S4Arrays_1.4.1 forcats_1.0.0
[17] progress_1.2.3 curl_5.2.2
[19] SparseArray_1.4.8 sass_0.4.9
[21] bslib_0.8.0 fontawesome_0.5.2
[23] htmlwidgets_1.6.4 testthat_3.2.1.1
[25] httr2_1.0.4 cachem_1.1.0
[27] teal.widgets_0.4.2 mime_0.12
[29] lifecycle_1.0.4 iterators_1.0.14
[31] pkgconfig_2.0.3 webshot2_0.1.1
[33] Matrix_1.7-0 R6_2.5.1
[35] fastmap_1.2.0 GenomeInfoDbData_1.2.12
[37] rbibutils_2.2.16 clue_0.3-65
[39] digest_0.6.37 colorspace_2.1-1
[41] shinycssloaders_1.1.0 ps_1.8.0
[43] AnnotationDbi_1.66.0 DESeq2_1.44.0
[45] RSQLite_2.3.7 filelock_1.0.3
[47] labeling_0.4.3 fansi_1.0.6
[49] httr_1.4.7 abind_1.4-8
[51] compiler_4.4.1 bit64_4.0.5
[53] withr_3.0.1 doParallel_1.0.17
[55] backports_1.5.0 BiocParallel_1.38.0
[57] DBI_1.2.3 logger_0.3.0
[59] biomaRt_2.60.1 rappdirs_0.3.3
[61] DelayedArray_0.30.1 rjson_0.2.22
[63] chromote_0.3.1 tools_4.4.1
[65] httpuv_1.6.15 glue_1.7.0
[67] callr_3.7.6 promises_1.3.0
[69] grid_4.4.1 checkmate_2.3.2
[71] cluster_2.1.6 generics_0.1.3
[73] gtable_0.3.5 websocket_1.4.2
[75] tidyr_1.3.1 hms_1.1.3
[77] xml2_1.3.6 utf8_1.2.4
[79] XVector_0.44.0 ggrepel_0.9.6
[81] foreach_1.5.2 pillar_1.9.0
[83] stringr_1.5.1 limma_3.60.4
[85] later_1.3.2 circlize_0.4.16
[87] dplyr_1.1.4 BiocFileCache_2.12.0
[89] lattice_0.22-6 bit_4.0.5
[91] tidyselect_1.2.1 ComplexHeatmap_2.20.0
[93] locfit_1.5-9.10 Biostrings_2.72.1
[95] knitr_1.48 gridExtra_2.3
[97] teal.logger_0.2.0 edgeR_4.2.1
[99] xfun_0.47 statmod_1.5.0
[101] brio_1.1.5 stringi_1.8.4
[103] UCSC.utils_1.0.0 yaml_2.3.10
[105] shinyWidgets_0.8.6 evaluate_0.24.0
[107] codetools_0.2-20 tibble_3.2.1
[109] cli_3.6.3 xtable_1.8-4
[111] Rdpack_2.6.1 processx_3.8.4
[113] jquerylib_0.1.4 munsell_0.5.1
[115] teal.reporter_0.3.1 Rcpp_1.0.13
[117] dbplyr_2.5.0 png_0.1-8
[119] parallel_4.4.1 assertthat_0.2.1
[121] blob_1.2.4 prettyunits_1.2.0
[123] scales_1.3.0 purrr_1.0.2
[125] crayon_1.5.3 GetoptLong_1.0.5
[127] rlang_1.1.4 formatR_1.14
[129] KEGGREST_1.44.1 shinyjs_2.1.0