Biomarker Analysis Catalog - Stable
  • Stable
    • Dev
  1. Graphs
  2. KG
  3. KG1
  4. KG1A
  • Index

  • Tables
    • CPMT
      • CPMT1
      • CPMT2
        • CPMT2A
      • CPMT3
    • DT
      • DT1
        • DT1A
        • DT1B
        • DT1C
      • DT2
        • DT2A
    • TET
      • TET1
        • TET1A

  • Graphs
    • AG
      • AG1
    • DG
      • DG1
        • DG1A
        • DG1B
      • DG2
      • DG3
        • DG3A
      • DG4
    • KG
      • KG1
        • KG1A
        • KG1B
      • KG2
        • KG2A
      • KG3
      • KG4
        • KG4A
        • KG4B
      • KG5
        • KG5A
        • KG5B
    • RFG
      • RFG1
        • RFG1A
      • RFG2
        • RFG2A
        • RFG2B
        • RFG2C
      • RFG3
    • RG
      • RG1
        • RG1A
        • RG1B
        • RG1C
      • RG2
        • RG2A
      • RG3
        • RG3A
        • RG3B
    • SPG
      • SPG1
      • SPG2
    • RNAG
      • RNAG1
      • RNAG2
      • RNAG3
      • RNAG4
      • RNAG5
      • RNAG6
      • RNAG7
      • RNAG8
      • RNAG9
      • RNAG10
    • SFG
      • SFG1
        • SFG1A
        • SFG1B
      • SFG2
        • SFG2A
        • SFG2B
        • SFG2C
        • SFG2D
      • SFG3
        • SFG3A
      • SFG4
      • SFG5
        • SFG5A
        • SFG5B
        • SFG5C
      • SFG6
        • SFG6A
        • SFG6B
        • SFG6C
  1. Graphs
  2. KG
  3. KG1
  4. KG1A

KG1A

Kaplan-Meier Graph for Biomarker Evaluable Population in One Treatment Arm

KG

  • Setup
  • Plot
  • Session Info

We will use the cadtte data set from the random.cdisc.data package to create the Kaplan-Meier (KM) plots. We start by filtering the time-to-event dataset for the overall survival observations and by one treatment arm (A), creating a new variable for event information, and curating a list of variables required to produce the plot.

Code
library(tern)
library(dplyr)
library(ggplot2)
library(grid)

adtte_arm <- random.cdisc.data::cadtte %>%
  df_explicit_na() %>%
  filter(PARAMCD == "OS", ARM == "A: Drug X") %>%
  mutate(is_event = CNSR == 0)

variables <- list(tte = "AVAL", is_event = "is_event", arm = "ARM")

We can filter the dataset further for the biomarker evaluable population using the corresponding flag variable, here BEP01FL:

Code
adtte_arm_bep <- adtte_arm %>%
  filter(BEP01FL == "Y")

Afterwards we can plot the basic KM graph, just using the further filtered dataset adtte_bep. Here we annotate the plot with median survival time, but could suppress it with annot_surv_med = FALSE.

Code
g_km(
  df = adtte_arm_bep,
  variables = variables,
  annot_surv_med = TRUE,
  rel_height_plot = 0.85
)

Code
sessionInfo()
R version 4.4.2 (2024-10-31)
Platform: x86_64-pc-linux-gnu
Running under: Ubuntu 24.04.1 LTS

Matrix products: default
BLAS:   /usr/lib/x86_64-linux-gnu/openblas-pthread/libblas.so.3 
LAPACK: /usr/lib/x86_64-linux-gnu/openblas-pthread/libopenblasp-r0.3.26.so;  LAPACK version 3.12.0

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       

time zone: Etc/UTC
tzcode source: system (glibc)

attached base packages:
[1] grid      stats     graphics  grDevices utils     datasets  methods  
[8] base     

other attached packages:
[1] ggplot2_3.5.1     dplyr_1.1.4       tern_0.9.7        rtables_0.6.11   
[5] magrittr_2.0.3    formatters_0.5.10

loaded via a namespace (and not attached):
 [1] Matrix_1.7-2             gtable_0.3.6             jsonlite_1.9.0          
 [4] compiler_4.4.2           tidyselect_1.2.1         stringr_1.5.1           
 [7] tidyr_1.3.1              splines_4.4.2            scales_1.3.0            
[10] yaml_2.3.10              fastmap_1.2.0            lattice_0.22-6          
[13] R6_2.6.1                 labeling_0.4.3           generics_0.1.3          
[16] knitr_1.49               forcats_1.0.0            rbibutils_2.3           
[19] htmlwidgets_1.6.4        backports_1.5.0          checkmate_2.3.2         
[22] tibble_3.2.1             munsell_0.5.1            pillar_1.10.1           
[25] rlang_1.1.5              broom_1.0.7              stringi_1.8.4           
[28] xfun_0.51                cli_3.6.4                withr_3.0.2             
[31] Rdpack_2.6.2             digest_0.6.37            cowplot_1.1.3           
[34] lifecycle_1.0.4          vctrs_0.6.5              evaluate_1.0.3          
[37] glue_1.8.0               farver_2.1.2             nestcolor_0.1.3         
[40] codetools_0.2-20         survival_3.8-3           random.cdisc.data_0.3.16
[43] colorspace_2.1-1         rmarkdown_2.29           purrr_1.0.4             
[46] tools_4.4.2              pkgconfig_2.0.3          htmltools_0.5.8.1       

Reuse

Copyright 2023, Hoffmann-La Roche Ltd.
KG
KG1B
Source Code
---
title: KG1A
subtitle: Kaplan-Meier Graph for Biomarker Evaluable Population in One Treatment Arm
categories: [KG]
---

------------------------------------------------------------------------

::: panel-tabset
{{< include setup.qmd >}}

## Plot

We can filter the dataset further for the biomarker evaluable population using the corresponding flag variable, here `BEP01FL`:

```{r}
adtte_arm_bep <- adtte_arm %>%
  filter(BEP01FL == "Y")
```

Afterwards we can plot the basic KM graph, just using the further filtered dataset `adtte_bep`.
Here we annotate the plot with median survival time, but could suppress it with `annot_surv_med = FALSE`.

```{r, fig.width=9, fig.height=6}
g_km(
  df = adtte_arm_bep,
  variables = variables,
  annot_surv_med = TRUE,
  rel_height_plot = 0.85
)
```

{{< include ../../misc/session_info.qmd >}}
:::

Made with ❤️ by the Statistical Engineering Team StatisticalEngineering

  • License

  • Edit this page
  • Report an issue
Cookie Preferences