A: Drug X B: Placebo C: Combination
(N=134) (N=134) (N=132)
—————————————————————————————————————————————————————————————————————————————————————————————
Responders 100 (74.6%) 84 (62.7%) 81 (61.4%)
95% CI (Wald, with correction) (66.9, 82.4) (54.1, 71.2) (52.7, 70.0)
Unstratified Analysis
Difference in Response rate (%) -11.9 -13.3
95% CI (Wald, with correction) (-23.7, -0.2) (-25.1, -1.4)
p-value (Chi-Squared Test) 0.0351 0.0204
Odds Ratio (95% CI) 0.57 (0.34 - 0.96) 0.54 (0.32 - 0.91)
Complete Response (CR) 60 (44.8%) 47 (35.1%) 57 (43.2%)
95% CI (Wald, with correction) (35.98, 53.57) (26.62, 43.53) (34.35, 52.01)
Partial Response (PR) 40 (29.9%) 37 (27.6%) 24 (18.2%)
95% CI (Wald, with correction) (21.73, 37.97) (19.67, 35.55) (11.22, 25.14)
Stable Disease (SD) 9 (6.7%) 22 (16.4%) 13 (9.8%)
95% CI (Wald, with correction) (2.11, 11.33) (9.77, 23.06) (4.39, 15.31)
Progressive Disease (PD) 24 (17.9%) 16 (11.9%) 33 (25.0%)
95% CI (Wald, with correction) (11.05, 24.78) (6.08, 17.80) (17.23, 32.77)
Not Evaluable (NE) 1 (0.7%) 12 (9.0%) 5 (3.8%)
95% CI (Wald, with correction) (0.00, 2.58) (3.75, 14.16) (0.15, 7.42)
Experimental use!
WebR is a tool allowing you to run R code in the web browser. Modify the code below and click run to see the results. Alternatively, copy the code and click here to open WebR in a new tab.
Remove (or add) rows of results by removing/adding the corresponding layers from the layout. For instance, the odds-ratio row is removed by simply removing the estimate_odds_ratio call:
A: Drug X B: Placebo C: Combination
(N=134) (N=134) (N=132)
—————————————————————————————————————————————————————————————————————————————————————
Responders 100 (74.6%) 84 (62.7%) 81 (61.4%)
95% CI (Wald, with correction) (66.9, 82.4) (54.1, 71.2) (52.7, 70.0)
Unstratified Analysis
Difference in Response rate (%) -11.9 -13.3
95% CI (Wald, with correction) (-23.7, -0.2) (-25.1, -1.4)
p-value (Chi-Squared Test) 0.0351 0.0204
Complete Response (CR) 60 (44.8%) 47 (35.1%) 57 (43.2%)
95% CI (Wald, with correction) (35.98, 53.57) (26.62, 43.53) (34.35, 52.01)
Partial Response (PR) 40 (29.9%) 37 (27.6%) 24 (18.2%)
95% CI (Wald, with correction) (21.73, 37.97) (19.67, 35.55) (11.22, 25.14)
Stable Disease (SD) 9 (6.7%) 22 (16.4%) 13 (9.8%)
95% CI (Wald, with correction) (2.11, 11.33) (9.77, 23.06) (4.39, 15.31)
Progressive Disease (PD) 24 (17.9%) 16 (11.9%) 33 (25.0%)
95% CI (Wald, with correction) (11.05, 24.78) (6.08, 17.80) (17.23, 32.77)
Not Evaluable (NE) 1 (0.7%) 12 (9.0%) 5 (3.8%)
95% CI (Wald, with correction) (0.00, 2.58) (3.75, 14.16) (0.15, 7.42)
Experimental use!
WebR is a tool allowing you to run R code in the web browser. Modify the code below and click run to see the results. Alternatively, copy the code and click here to open WebR in a new tab.
The confidence level is controlled by the conf_level parameter to the estimation functions. Similarly, the methods for tests and confidence interval can be modified (see ?estimate_proportion_diff).
WebR is a tool allowing you to run R code in the web browser. Modify the code below and click run to see the results. Alternatively, copy the code and click here to open WebR in a new tab.
The stratified analysis section can be added by defining the analyses needed with control_binary_comparison for the argument strat_analysis and identifying the stratification variables to use.
A: Drug X B: Placebo C: Combination
(N=134) (N=134) (N=132)
———————————————————————————————————————————————————————————————————————————————————————————————————
Responders 100 (74.6%) 84 (62.7%) 81 (61.4%)
95% CI (Wald, with correction) (66.9, 82.4) (54.1, 71.2) (52.7, 70.0)
Unstratified Analysis
Difference in Response rate (%) -11.9 -13.3
95% CI (Wald, with correction) (-23.7, -0.2) (-25.1, -1.4)
p-value (Chi-Squared Test) 0.0351 0.0204
Odds Ratio (95% CI) 0.57 (0.34 - 0.96) 0.54 (0.32 - 0.91)
Stratified Analysis
Difference in Response rate (%) -11.9 -13.5
95% CI (CMH, without correction) (-22.7, -1.0) (-24.5, -2.5)
p-value (Cochran-Mantel-Haenszel Test) 0.0366 0.0180
Odds Ratio (95% CI) 0.57 (0.34 - 0.96) 0.54 (0.32 - 0.90)
Complete Response (CR) 60 (44.8%) 47 (35.1%) 57 (43.2%)
95% CI (Wald, with correction) (35.98, 53.57) (26.62, 43.53) (34.35, 52.01)
Partial Response (PR) 40 (29.9%) 37 (27.6%) 24 (18.2%)
95% CI (Wald, with correction) (21.73, 37.97) (19.67, 35.55) (11.22, 25.14)
Stable Disease (SD) 9 (6.7%) 22 (16.4%) 13 (9.8%)
95% CI (Wald, with correction) (2.11, 11.33) (9.77, 23.06) (4.39, 15.31)
Progressive Disease (PD) 24 (17.9%) 16 (11.9%) 33 (25.0%)
95% CI (Wald, with correction) (11.05, 24.78) (6.08, 17.80) (17.23, 32.77)
Not Evaluable (NE) 1 (0.7%) 12 (9.0%) 5 (3.8%)
95% CI (Wald, with correction) (0.00, 2.58) (3.75, 14.16) (0.15, 7.42)
Experimental use!
WebR is a tool allowing you to run R code in the web browser. Modify the code below and click run to see the results. Alternatively, copy the code and click here to open WebR in a new tab.
The definition of responders is realized during the pre-processing step. The layout does not need to be modified and can be reused.
anl <- anl_adsl %>%left_join(anl_adrs, by =c("STUDYID", "USUBJID")) %>%mutate(rsp_lab =d_onco_rsp_label(AVALC)) %>%mutate(is_rsp = AVALC =="CR") %>%mutate(ARM =relevel(ARM, ref ="A: Drug X")) %>%var_relabel(ARM ="Description of Planned Arm")result <-build_table(lyt = lyt_01, df = anl)result
A: Drug X B: Placebo C: Combination
(N=134) (N=134) (N=132)
—————————————————————————————————————————————————————————————————————————————————————————————
Responders 60 (44.8%) 47 (35.1%) 57 (43.2%)
95% CI (Wald, with correction) (36.0, 53.6) (26.6, 43.5) (34.4, 52.0)
Unstratified Analysis
Difference in Response rate (%) -9.7 -1.6
95% CI (Wald, with correction) (-22.1, 2.7) (-14.3, 11.1)
p-value (Chi-Squared Test) 0.1049 0.7934
Odds Ratio (95% CI) 0.67 (0.41 - 1.09) 0.94 (0.58 - 1.52)
Complete Response (CR) 60 (44.8%) 47 (35.1%) 57 (43.2%)
95% CI (Wald, with correction) (35.98, 53.57) (26.62, 43.53) (34.35, 52.01)
Partial Response (PR) 40 (29.9%) 37 (27.6%) 24 (18.2%)
95% CI (Wald, with correction) (21.73, 37.97) (19.67, 35.55) (11.22, 25.14)
Stable Disease (SD) 9 (6.7%) 22 (16.4%) 13 (9.8%)
95% CI (Wald, with correction) (2.11, 11.33) (9.77, 23.06) (4.39, 15.31)
Progressive Disease (PD) 24 (17.9%) 16 (11.9%) 33 (25.0%)
95% CI (Wald, with correction) (11.05, 24.78) (6.08, 17.80) (17.23, 32.77)
Not Evaluable (NE) 1 (0.7%) 12 (9.0%) 5 (3.8%)
95% CI (Wald, with correction) (0.00, 2.58) (3.75, 14.16) (0.15, 7.42)
Experimental use!
WebR is a tool allowing you to run R code in the web browser. Modify the code below and click run to see the results. Alternatively, copy the code and click here to open WebR in a new tab.
Similarly to in the previous tab, redefinition or relabeling of the result is a pre-processing step and the original table layout can be reused.
A: Drug X B: Placebo C: Combination
(N=134) (N=134) (N=132)
—————————————————————————————————————————————————————————————————————————————————————————————
Responders 109 (81.3%) 106 (79.1%) 94 (71.2%)
95% CI (Wald, with correction) (74.4, 88.3) (71.8, 86.4) (63.1, 79.3)
Unstratified Analysis
Difference in Response rate (%) -2.2 -10.1
95% CI (Wald, with correction) (-12.5, 8.0) (-21.0, 0.8)
p-value (Chi-Squared Test) 0.6455 0.0520
Odds Ratio (95% CI) 0.87 (0.48 - 1.59) 0.57 (0.32 - 1.01)
Progressive Disease (PD) 24 (17.9%) 16 (11.9%) 33 (25.0%)
95% CI (Wald, with correction) (11.05, 24.78) (6.08, 17.80) (17.23, 32.77)
No Progression 109 (81.3%) 106 (79.1%) 94 (71.2%)
95% CI (Wald, with correction) (74.37, 88.31) (71.85, 86.36) (63.11, 79.31)
Not Evaluable (NE) 1 (0.7%) 12 (9.0%) 5 (3.8%)
95% CI (Wald, with correction) (0.00, 2.58) (3.75, 14.16) (0.15, 7.42)
Experimental use!
WebR is a tool allowing you to run R code in the web browser. Modify the code below and click run to see the results. Alternatively, copy the code and click here to open WebR in a new tab.
Code
library(dplyr)library(tern)adsl <- random.cdisc.data::cadsladrs <- random.cdisc.data::cadrs# Ensure character variables are converted to factors and empty strings and NAs are explicit missing levels.adsl <-df_explicit_na(adsl)adrs <-df_explicit_na(adrs)anl_adrs <- adrs %>%filter(PARAMCD =="INVET") %>%select(STUDYID, USUBJID, PARAMCD, AVISIT, AVALC)anl_adsl <- adsl %>%select(STUDYID, USUBJID, ARM, STRATA1)
shinylive allow you to modify to run shiny application entirely in the web browser. Modify the code below and click re-run the app to see the results. The performance is slighly worse and some of the features (e.g. downloading) might not work at all.