Code
result <- basic_table(show_colcounts = TRUE) %>%
split_cols_by("ARMCD", ref_group = "ARM A") %>%
split_rows_by("PARAM", split_fun = drop_split_levels) %>%
summarize_ancova(
vars = "CHG",
variables = list(arm = "ARMCD", covariates = c("BASE", "AVISIT", "AVISIT*ARMCD")),
conf_level = 0.95,
var_labels = "WEEK 1 DAY 8",
table_names = "WEEK 1 DAY 8",
interaction_y = "WEEK 1 DAY 8",
interaction_item = "AVISIT"
) %>%
summarize_ancova(
vars = "CHG",
variables = list(arm = "ARMCD", covariates = c("BASE", "AVISIT", "AVISIT*ARMCD")),
conf_level = 0.95,
var_labels = "WEEK 2 DAY 15",
table_names = "WEEK 2 DAY 15",
interaction_y = "WEEK 2 DAY 15",
interaction_item = "AVISIT"
) %>%
summarize_ancova(
vars = "CHG",
variables = list(arm = "ARMCD", covariates = c("BASE", "AVISIT", "AVISIT*ARMCD")),
conf_level = 0.95,
var_labels = "WEEK 5 DAY 36",
table_names = "WEEK 5 DAY 36",
interaction_y = "WEEK 5 DAY 36",
interaction_item = "AVISIT"
) %>%
build_table(adqs_in, alt_counts_df = adsl)
result
ARM A ARM B ARM C
(N=134) (N=134) (N=132)
——————————————————————————————————————————————————————————————————————————
BFI All Questions
WEEK 1 DAY 8
n 68 73 62
Adjusted Mean 4.34 5.96 3.90
Difference in Adjusted Means 1.62 -0.44
95% CI (-1.75, 4.98) (-3.94, 3.06)
p-value 0.3460 0.8059
WEEK 2 DAY 15
n 68 73 62
Adjusted Mean 12.99 11.23 9.86
Difference in Adjusted Means -1.76 -3.13
95% CI (-5.12, 1.60) (-6.64, 0.37)
p-value 0.3048 0.0795
WEEK 5 DAY 36
n 68 73 62
Adjusted Mean 23.88 23.08 28.21
Difference in Adjusted Means -0.81 4.33
95% CI (-4.17, 2.56) (0.83, 7.83)
p-value 0.6383 0.0155
Fatigue Interference
WEEK 1 DAY 8
n 68 73 62
Adjusted Mean 5.97 5.19 5.21
Difference in Adjusted Means -0.78 -0.76
95% CI (-4.17, 2.61) (-4.30, 2.78)
p-value 0.6522 0.6729
WEEK 2 DAY 15
n 68 73 62
Adjusted Mean 11.39 9.42 9.55
Difference in Adjusted Means -1.96 -1.84
95% CI (-5.35, 1.43) (-5.37, 1.70)
p-value 0.2560 0.3084
WEEK 5 DAY 36
n 68 73 62
Adjusted Mean 22.79 25.37 23.43
Difference in Adjusted Means 2.58 0.64
95% CI (-0.81, 5.97) (-2.89, 4.18)
p-value 0.1353 0.7212