DG1A
Histograms of Two Numeric Variables
We will use the cadsl
data set from the random.cdisc.data
package and ggplot2
to create the plots. In this example, we will plot histograms of one or multiple numeric variables. We start by selecting the biomarker evaluable population with the flag variable BEP01FL
and then populating a new continuous biomarker variable, BMRKR3
.
In this example, we will manipulate the variables that we want to show in the graph into a long data format using the pivot_longer()
function from tidyr
. This is necessary such that below we can use the faceting layer facet_grid()
to plot each variable in its own facet.
Producing the base plot is then simple: We use the same code as above but just add the faceting layer.
Code
Similar to the DG1 example, we will calculate and populate the statistics table to accompany the plot. Note that also here we can use the pivot_longer()
function to also obtain the statistics table input orig_tb
and then data_tb
in long format, and thus parallel to the biomarker variable format in num_var_long
.
Code
orig_tb <- num_var_long %>%
group_by(var) %>%
summarize_at("value", list(mean = mean, median = median)) %>%
pivot_longer(
c(mean, median),
names_to = "Statistic",
values_to = "Value"
)
data_tb <- orig_tb %>%
group_by(var) %>%
summarize(x = 1, y = 1, tb = list(tibble(Statistic, Value)))
graph <- graph +
geom_table_npc(data = data_tb, aes(npcx = x, npcy = y, label = tb))
graph
R version 4.4.1 (2024-06-14)
Platform: x86_64-pc-linux-gnu
Running under: Ubuntu 22.04.4 LTS
Matrix products: default
BLAS: /usr/lib/x86_64-linux-gnu/openblas-pthread/libblas.so.3
LAPACK: /usr/lib/x86_64-linux-gnu/openblas-pthread/libopenblasp-r0.3.20.so; LAPACK version 3.10.0
locale:
[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
[3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8
[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
[7] LC_PAPER=en_US.UTF-8 LC_NAME=C
[9] LC_ADDRESS=C LC_TELEPHONE=C
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
time zone: Etc/UTC
tzcode source: system (glibc)
attached base packages:
[1] stats graphics grDevices utils datasets methods base
other attached packages:
[1] tidyr_1.3.1 tibble_3.2.1 dplyr_1.1.4
[4] ggplot2.utils_0.3.2 ggplot2_3.5.1 tern_0.9.5.9022
[7] rtables_0.6.9.9014 magrittr_2.0.3 formatters_0.5.9.9001
loaded via a namespace (and not attached):
[1] utf8_1.2.4 generics_0.1.3
[3] EnvStats_3.0.0 stringi_1.8.4
[5] lattice_0.22-6 digest_0.6.37
[7] evaluate_0.24.0 grid_4.4.1
[9] fastmap_1.2.0 jsonlite_1.8.8
[11] Matrix_1.7-0 backports_1.5.0
[13] survival_3.7-0 gridExtra_2.3
[15] purrr_1.0.2 fansi_1.0.6
[17] scales_1.3.0 codetools_0.2-20
[19] Rdpack_2.6.1 cli_3.6.3
[21] ggpp_0.5.8-1 rlang_1.1.4
[23] rbibutils_2.2.16 munsell_0.5.1
[25] splines_4.4.1 withr_3.0.1
[27] yaml_2.3.10 tools_4.4.1
[29] polynom_1.4-1 checkmate_2.3.2
[31] colorspace_2.1-1 forcats_1.0.0
[33] ggstats_0.6.0 broom_1.0.6
[35] vctrs_0.6.5 R6_2.5.1
[37] lifecycle_1.0.4 stringr_1.5.1
[39] htmlwidgets_1.6.4 MASS_7.3-61
[41] pkgconfig_2.0.3 pillar_1.9.0
[43] gtable_0.3.5 glue_1.7.0
[45] xfun_0.47 tidyselect_1.2.1
[47] knitr_1.48 farver_2.1.2
[49] htmltools_0.5.8.1 labeling_0.4.3
[51] rmarkdown_2.28 random.cdisc.data_0.3.15.9009
[53] compiler_4.4.1