Data merge
NEST coreDev
2022-05-11
data-merge.Rmd
Combining datasets is a crucial step when using modules with more
than one dataset. In the context of teal
, we use the term
“merge” to combine datasets where two functions are offered
merge_expression_module
and
merge_expression_srv
. Depending on the specific scenario,
one or the other shall be used.
When no processing of the data_extract
list is required,
the merge_expression_module
function is used to read the
data and the data_extract_spec
’s list and apply the
merging. It is a wrapper that combines
data_extract_multiple_srv()
and
merge_expression_srv()
see below for more details. With
additional processing of the data_extract
list input,
merge_expression_srv()
can be combined with
data_extract_multiple_srv()
or
data_extract_srv()
to customize the
selector_list
input.
In the coming sections, we will show examples of both scenarios.
merge_expression_module
With merge_expression_module
solely, all you would need
is a list of data_extract_spec
objects for the
data_extract
argument, a list of reactive or non-reactive
data.frame
objects and a list of join keys corresponding to
every data.frame
object.
App code
library(teal.transform)
#> Loading required package: magrittr
library(shiny)
adsl_extract <- teal.transform::data_extract_spec(
dataname = "ADSL",
select = select_spec(
label = "Select variable:",
choices = c("AGE", "BMRKR1"),
selected = "AGE",
multiple = TRUE,
fixed = FALSE
)
)
adtte_extract <- teal.transform::data_extract_spec(
dataname = "ADTTE",
select = select_spec(
choices = c("AVAL", "ASEQ"),
selected = "AVAL",
multiple = TRUE,
fixed = FALSE
)
)
data_extracts <- list(adsl_extract = adsl_extract, adtte_extract = adtte_extract)
merge_ui <- function(id, data_extracts) {
ns <- NS(id)
teal.widgets::standard_layout(
output = teal.widgets::white_small_well(
verbatimTextOutput(ns("expr")),
dataTableOutput(ns("data"))
),
encoding = div(
teal.transform::data_extract_ui(
ns("adsl_extract"), # must correspond with data_extracts list names
label = "ADSL extract",
data_extracts[[1]]
),
teal.transform::data_extract_ui(
ns("adtte_extract"), # must correspond with data_extracts list names
label = "ADTTE extract",
data_extracts[[2]]
)
)
)
}
merge_module <- function(id, datasets, data_extracts, join_keys) {
moduleServer(id, function(input, output, session) {
merged_data <- teal.transform::merge_expression_module(
data_extract = data_extracts,
datasets = datasets,
join_keys = join_keys,
merge_function = "dplyr::left_join"
)
ANL <- reactive({ # nolint
eval(envir = list2env(datasets), expr = as.expression(merged_data()$expr))
})
output$expr <- renderText(paste(merged_data()$expr, collapse = "\n"))
output$data <- renderDataTable(ANL())
})
}
# Define data.frame objects
ADSL <- teal.transform::rADSL # nolint
ADTTE <- teal.transform::rADTTE # nolint
# create a list of data.frame objects
datasets <- list(ADSL = ADSL, ADTTE = ADTTE)
# create join_keys
join_keys <- teal.data::join_keys(
teal.data::join_key("ADSL", "ADSL", c("STUDYID", "USUBJID")),
teal.data::join_key("ADSL", "ADTTE", c("STUDYID", "USUBJID")),
teal.data::join_key("ADTTE", "ADTTE", c("STUDYID", "USUBJID", "PARAMCD"))
)
data_extract_multiple_srv
+
merge_expression_srv
In the scenario above, if the user deselects the ADTTE
variable, the merging between ADTTE
and ADSL
would still take place even though ADTTE
is not used or
needed here. Here, the developer might update the
selector_list
input in a reactive manner so that it gets
updated based on conditions set by the developer. Below, we reuse the
input from above and we update the app
server so that the
adtte_extract
is removed from the
selector_list
input when no ADTTE
variable is
selected and the reactive_selector_list
is passed to
merge_expression_srv
:
merge_module <- function(id, datasets, data_extracts, join_keys) {
moduleServer(id, function(input, output, session) {
selector_list <- teal.transform::data_extract_multiple_srv(data_extracts, datasets, join_keys)
reactive_selector_list <- reactive({
if (is.null(selector_list()$adtte_extract) || length(selector_list()$adtte_extract()$select) == 0) {
selector_list()[names(selector_list()) != "adtte_extract"]
} else {
selector_list()
}
})
merged_data <- teal.transform::merge_expression_srv(
selector_list = reactive_selector_list,
datasets = datasets,
join_keys = join_keys,
merge_function = "dplyr::left_join"
)
ANL <- reactive({ # nolint
eval(envir = list2env(datasets), expr = as.expression(merged_data()$expr))
})
output$expr <- renderText(paste(merged_data()$expr, collapse = "\n"))
output$data <- renderDataTable(ANL())
})
}
Shiny app
shinyApp(
ui = fluidPage(merge_ui("data_merge", data_extracts)),
server = function(input, output, session) {
merge_module("data_merge", datasets, data_extracts, join_keys)
}
)
merge_expression_module
is replaced here with three
parts:
-
selector_list
: output ofdata_extract_multiple_srv
which loops over the list of data_extract given and runsdata_extract_srv
for each one returning a list of reactive objects. -
reactive_selector_list
: intermediate reactive list updatingselector_list
content -
merged_data
: output ofmerge_expression_srv
usingreactive_selector_list
as input
Output from merging
Both merge functions, merge_expression_srv
and
merge_expression_module
, return a reactive object which
contains a list of the following elements:
-
expr
: code needed to replicate merged dataset -
columns_source
: list of columns selected per selector -
keys
: the keys of the merged dataset -
filter_info
: filters that are applied on the data
These elements can be further used inside the server to retrieve and use information about the selections, data, filters, …
Merging of non CDISC
datasets
General datasets do not share the same relationships as
CDISC
datasets thus these relationships must be specified
by the join_keys
functions. For more information, please
refer to the Join Keys
vignette.
The data merge module respects the relationships given by the user
and in the case of multiple datasets to merge, the order is specified by
the order of elements in the data_extract
argument of the
merge_expression_module
function. Merging groups of
datasets with complex relationships can quickly become challenging to
specify so please take extra care when setting this up.