Creates a named list of data_extract_srv
output
data_extract_multiple_srv.Rd
data_extract_multiple_srv
loops over the list of data_extract
given and
runs data_extract_srv
for each one returning a list of reactive objects.
This was suitable as input for (deprecated) data_merge_srv()
.
Usage
data_extract_multiple_srv(data_extract, datasets, ...)
# S3 method for FilteredData
data_extract_multiple_srv(data_extract, datasets, ...)
# S3 method for list
data_extract_multiple_srv(
data_extract,
datasets,
join_keys = NULL,
select_validation_rule = NULL,
filter_validation_rule = NULL,
dataset_validation_rule = if (is.null(select_validation_rule) &&
is.null(filter_validation_rule)) {
NULL
} else {
shinyvalidate::sv_required("Please select a dataset")
},
...
)
Arguments
- data_extract
(named
list
ofdata_extract_spec
objects) the listdata_extract_spec
objects. The names of the elements in the list need to correspond to theids
passed todata_extract_ui
. See example for details.- datasets
(
FilteredData
orlist
ofreactive
or non-reactive
data.frame
)
object containing data either in the form of teal.slice::FilteredData or as a list ofdata.frame
. When passing a list of non-reactivedata.frame
objects, they are converted to reactivedata.frame
s internally. When passing a list of reactive or non-reactivedata.frame
objects, the argumentjoin_keys
is required also.- ...
an additional argument
join_keys
is required whendatasets
is a list ofdata.frame
. It shall contain the keys per dataset indatasets
.- join_keys
(
JoinKeys
orNULL
) of join keys per dataset indatasets
.- select_validation_rule
(
NULL
,function
ornamed list
offunction
) Should there be anyshinyvalidate
input validation of the select parts of thedata_extract_ui
If alldata_extract
require the same validation function then this can be used directly ( i.e.select_validation_rule = shinyvalidate::sv_required()
). For more fine-grained control use a list:select_validation_rule = list(extract_1 = sv_required(), extract2 = ~ if (length(.) > 2) "Error")
. IfNULL
then no validation will be added. See example for more details.- filter_validation_rule
(
NULL
,function
ornamed list
offunction
) Same asselect_validation_rule
but for the filter (values) part of thedata_extract_ui
.- dataset_validation_rule
(
NULL
,function
ornamed list
offunction
) Same asselect_validation_rule
but for the choose dataset part of thedata_extract_ui
Value
reactive named list containing outputs from data_extract_srv()
. Output list
names are the same as data_extract
input argument.
Examples
library(shiny)
library(shinyvalidate)
library(shinyjs)
library(teal.widgets)
iris_select <- data_extract_spec(
dataname = "iris",
select = select_spec(
label = "Select variable:",
choices = variable_choices(iris, colnames(iris)),
selected = "Sepal.Length",
multiple = TRUE,
fixed = FALSE
)
)
iris_filter <- data_extract_spec(
dataname = "iris",
filter = filter_spec(
vars = "Species",
choices = c("setosa", "versicolor", "virginica"),
selected = "setosa",
multiple = TRUE
)
)
data_list <- list(iris = reactive(iris))
app <- shinyApp(
ui = fluidPage(
useShinyjs(),
standard_layout(
output = verbatimTextOutput("out1"),
encoding = tagList(
data_extract_ui(
id = "x_var",
label = "Please select an X column",
data_extract_spec = iris_select
),
data_extract_ui(
id = "species_var",
label = "Please select 2 Species",
data_extract_spec = iris_filter
)
)
)
),
server = function(input, output, session) {
exactly_2_validation <- function(msg) {
~ if (length(.) != 2) msg
}
selector_list <- data_extract_multiple_srv(
list(x_var = iris_select, species_var = iris_filter),
datasets = data_list,
select_validation_rule = list(
x_var = sv_required("Please select an X column")
),
filter_validation_rule = list(
species_var = compose_rules(
sv_required("Exactly 2 Species must be chosen"),
exactly_2_validation("Exactly 2 Species must be chosen")
)
)
)
iv_r <- reactive({
iv <- InputValidator$new()
compose_and_enable_validators(
iv,
selector_list,
validator_names = NULL
)
})
output$out1 <- renderPrint({
if (iv_r()$is_valid()) {
ans <- lapply(selector_list(), function(x) {
cat(format_data_extract(x()), "\n\n")
})
} else {
"Please fix errors in your selection"
}
})
}
)
if (interactive()) {
runApp(app)
}