Extraction of the selector(s) details
data_extract_srv.Rd
Extracting details of the selection(s) in data_extract_ui elements.
Usage
data_extract_srv(id, datasets, data_extract_spec, ...)
# S3 method for FilteredData
data_extract_srv(id, datasets, data_extract_spec, ...)
# S3 method for list
data_extract_srv(
id,
datasets,
data_extract_spec,
join_keys = NULL,
select_validation_rule = NULL,
filter_validation_rule = NULL,
dataset_validation_rule = if (is.null(select_validation_rule) &&
is.null(filter_validation_rule)) {
NULL
} else {
shinyvalidate::sv_required("Please select a dataset")
},
...
)
Arguments
- id
An ID string that corresponds with the ID used to call the module's UI function.
- datasets
(
FilteredData
orlist
ofreactive
or non-reactive
data.frame
)
object containing data either in the form of teal.slice::FilteredData or as a list ofdata.frame
. When passing a list of non-reactivedata.frame
objects, they are converted to reactivedata.frame
s internally. When passing a list of reactive or non-reactivedata.frame
objects, the argumentjoin_keys
is required also.- data_extract_spec
(
data_extract_spec
or a list ofdata_extract_spec
)
A list of data filter and select information constructed by data_extract_spec.- ...
an additional argument
join_keys
is required whendatasets
is a list ofdata.frame
. It shall contain the keys per dataset indatasets
.- join_keys
(
JoinKeys
orNULL
) of keys per dataset indatasets
- select_validation_rule
(
NULL
orfunction
) Should there be anyshinyvalidate
input validation of the select parts of thedata_extract_ui
. You can use a validation function directly (i.e.select_validation_rule = shinyvalidate::sv_required()
) or for more fine-grained control use a function:select_validation_rule = ~ if (length(.) > 2) "Error"
. IfNULL
then no validation will be added. See example for more details.- filter_validation_rule
(
NULL
orfunction
) Same asselect_validation_rule
but for the filter (values) part of thedata_extract_ui
.- dataset_validation_rule
(
NULL
orfunction
) Same asselect_validation_rule
but for the choose dataset part of thedata_extract_ui
Value
A reactive list
containing following fields:
filters
: A list with the information on the filters that are applied to the data set.select
: The variables that are selected from the dataset.always_selected
: The column names from the data set that should always be selected.reshape
: Whether reshape long to wide should be applied or not.dataname
: The name of the data set.internal_id
: Theid
of the corresponding shiny input element.keys
: The names of the columns that can be used to merge the data set.iv
:Ashinyvalidate::InputValidator
containingvalidator
for thisdata_extract
Examples
library(shiny)
library(shinyvalidate)
ADSL <- data.frame(
STUDYID = "A",
USUBJID = LETTERS[1:10],
SEX = rep(c("F", "M"), 5),
AGE = rpois(10, 30),
BMRKR1 = rlnorm(10)
)
adsl_extract <- data_extract_spec(
dataname = "ADSL",
filter = filter_spec(vars = "SEX", choices = c("F", "M"), selected = "F"),
select = select_spec(
label = "Select variable:",
choices = variable_choices(ADSL, c("AGE", "BMRKR1")),
selected = "AGE",
multiple = TRUE,
fixed = FALSE
)
)
# Using reactive list of data.frames
data_list <- list(ADSL = reactive(ADSL))
join_keys <- teal.data::join_keys(teal.data::join_key("ADSL", "ADSL", c("STUDYID", "USUBJID")))
app <- shinyApp(
ui = fluidPage(
teal.widgets::standard_layout(
output = verbatimTextOutput("out1"),
encoding = tagList(
data_extract_ui(
id = "adsl_var",
label = "ADSL selection",
data_extract_spec = adsl_extract
)
)
)
),
server = function(input, output, session) {
adsl_reactive_input <- data_extract_srv(
id = "adsl_var",
datasets = data_list,
data_extract_spec = adsl_extract,
join_keys = join_keys,
select_validation_rule = sv_required("Please select a variable.")
)
iv_r <- reactive({
iv <- InputValidator$new()
iv$add_validator(adsl_reactive_input()$iv)
iv$enable()
iv
})
output$out1 <- renderPrint({
if (iv_r()$is_valid()) {
cat(format_data_extract(adsl_reactive_input()))
} else {
"Please fix errors in your selection"
}
})
}
)
if (interactive()) {
runApp(app)
}
# Using FilteredData - Note this method will be deprecated
datasets <- teal.slice::init_filtered_data(
list(ADSL = list(dataset = ADSL)),
join_keys = teal.data::join_keys(
teal.data::join_key("ADSL", "ADSL", c("USUBJID", "STUDYID"))
)
)
app <- shinyApp(
ui = fluidPage(
teal.widgets::standard_layout(
output = verbatimTextOutput("out1"),
encoding = tagList(
data_extract_ui(
id = "adsl_var",
label = "ADSL selection",
data_extract_spec = adsl_extract
)
)
)
),
server = function(input, output, session) {
adsl_reactive_input <- data_extract_srv(
id = "adsl_var",
datasets = datasets,
data_extract_spec = adsl_extract
)
output$out1 <- renderPrint(adsl_reactive_input())
}
)
if (interactive()) {
runApp(app)
}