Correlation of PFS and OS event times for data from the IDM
Arguments
- data
(
data.frame
)
in the format produced bygetOneClinicalTrial()
.- transition
(
TransitionParameters
object)
specifying the assumed distribution of transition hazards. Initial parameters for optimization can be specified here. Seeexponential_transition()
orweibull_transition()
for details.- bootstrap
(
flag
)
ifTRUE
computes confidence interval via bootstrap.- bootstrap_n
(
count
)
number of bootstrap samples.- conf_level
(
proportion
)
confidence level for the confidence interval.
Examples
transition <- exponential_transition(h01 = 1.2, h02 = 1.5, h12 = 1.6)
data <- getClinicalTrials(
nRep = 1, nPat = c(100), seed = 1234, datType = "1rowTransition",
transitionByArm = list(transition), dropout = list(rate = 0.5, time = 12),
accrual = list(param = "intensity", value = 7)
)[[1]]
#> Simulating 1 trials:
#>
|
| | 0%
|
|======================================================================| 100%
corPFSOS(data, transition = exponential_transition(), bootstrap = FALSE)
#> $corPFSOS
#> [1] 0.6015421
#>
if (FALSE) {
corPFSOS(data, transition = exponential_transition(), bootstrap = TRUE)
}