Skip to contents

This function censors a study after a pre-specified number of events occurred.

Usage

censoringByNumberEvents(data, eventNum, typeEvent)

Arguments

data

(data.frame)
illness-death data set in 1rowPatient format.

eventNum

(int)
number of events.

typeEvent

(string)
type of event. Possible values are PFS and OS.

Value

This function returns a data set that is censored after eventNum of typeEvent-events occurred.

Examples

transition1 <- weibull_transition(h01 = 1.2, h02 = 1.5, h12 = 1.6, p01 = 0.8, p02 = 0.9, p12 = 1)
transition2 <- weibull_transition(h01 = 1, h02 = 1.3, h12 = 1.7, p01 = 1.1, p02 = 0.9, p12 = 1.1)

simStudy <- getOneClinicalTrial(
  nPat = c(20, 20), transitionByArm = list(transition1, transition2),
  dropout = list(rate = 0.3, time = 10),
  accrual = list(param = "time", value = 7)
)
simStudyWide <- getDatasetWideFormat(simStudy)
censoringByNumberEvents(data = simStudyWide, eventNum = 20, typeEvent = "PFS")
#>    id trt    PFStime PFSevent     OStime CensoredOS OSevent recruitTime
#> 1   1   1 0.29751960        1 0.29751960          0       1  0.04517520
#> 2   2   1 0.12513894        1 0.54624044          0       1  0.26554857
#> 3   3   1 0.49792717        1 0.49792717          0       1  2.07153825
#> 4   5   1 0.27160138        1 0.27160138          0       1  0.04712055
#> 5   7   1 0.01297705        1 0.01297705          0       1  2.31169178
#> 6   8   1 0.03330278        1 0.10455802          0       1  1.89845412
#> 7   9   1 0.03270915        1 0.22374433          0       1  2.52109845
#> 8  10   1 0.41109532        1 0.41109532          0       1  0.41170454
#> 9  11   1 0.11409741        1 0.11409741          0       1  2.43969680
#> 10 14   1 0.18720833        1 0.18720833          0       1  1.14154604
#> 11 17   1 0.10301071        0 0.10301071          1       0  2.80318332
#> 12 18   1 0.53709000        1 1.29772311          0       1  0.29178983
#> 13 19   1 0.12296926        1 0.12296926          0       1  2.36188524
#> 14 25   2 1.37601037        1 2.24317229          1       0  0.66302174
#> 15 26   2 0.25009033        1 0.25009033          0       1  2.40751718
#> 16 27   2 0.17169190        1 0.83066636          0       1  1.11791628
#> 17 28   2 0.10339521        1 0.10339521          0       1  2.06612613
#> 18 29   2 0.05870449        1 0.28657794          0       1  2.06008296
#> 19 31   2 0.71155991        1 0.71155991          0       1  1.02311548
#> 20 33   2 0.15334548        1 0.19521458          1       0  2.71097945
#> 21 39   2 0.02897126        1 0.02897126          0       1  2.87722277
#>    OStimeCal PFStimeCal
#> 1  0.3426948  0.3426948
#> 2  0.8117890  0.3906875
#> 3  2.5694654  2.5694654
#> 4  0.3187219  0.3187219
#> 5  2.3246688  2.3246688
#> 6  2.0030121  1.9317569
#> 7  2.7448428  2.5538076
#> 8  0.8227999  0.8227999
#> 9  2.5537942  2.5537942
#> 10 1.3287544  1.3287544
#> 11 2.9061940  2.9061940
#> 12 1.5895129  0.8288798
#> 13 2.4848545  2.4848545
#> 14 2.9061940  2.0390321
#> 15 2.6576075  2.6576075
#> 16 1.9485826  1.2896082
#> 17 2.1695213  2.1695213
#> 18 2.3466609  2.1187875
#> 19 1.7346754  1.7346754
#> 20 2.9061940  2.8643249
#> 21 2.9061940  2.9061940