
Package index
-
QR_decomp() - QR decomposition
-
STAN_BLOCKS - List of Stan Blocks
-
Stack - R6 Class for a FIFO stack
-
add_class() - Add a class
-
adjust_trajectories() - Adjust trajectories due to the intercurrent event (ICE)
-
adjust_trajectories_single() - Adjust trajectory of a subject's outcome due to the intercurrent event (ICE)
-
analyse() - Analyse Multiple Imputed Datasets
-
ancova() - Analysis of Covariance
-
ancova_single() - Implements an Analysis of Covariance (ANCOVA)
-
antidepressant_data - Antidepressant trial data
-
apply_delta() - Applies delta adjustment
-
as_analysis() - Construct an
analysisobject
-
as_ascii_table() - as_ascii_table
-
as_class() - Set Class
-
as_cropped_char() - as_cropped_char
-
as_dataframe() - Convert object to dataframe
-
as_draws() - Creates a
drawsobject
-
as_imputation() - Create an imputation object
-
as_indices() - Convert indicator to index
-
as_mmrm_df() - Creates a "MMRM" ready dataset
-
as_mmrm_formula() - Create MMRM formula
-
as_model_df() - Expand
data.frameinto a design matrix
-
as_simple_formula() - Creates a simple formula object from a string
-
as_stan_array() - As array
-
as_strata() - Create vector of Stratas
-
assert_variables_exist() - Assert that all variables exist within a dataset
-
char2fct() - Convert character variables to factor
-
check_ESS() - Diagnostics of the MCMC based on ESS
-
check_hmc_diagn() - Diagnostics of the MCMC based on HMC-related measures.
-
check_mcmc() - Diagnostics of the MCMC
-
compute_sigma() - Compute covariance matrix for some reference-based methods (JR, CIR)
-
control_bayes() - Control the computational details of the imputation methods
-
convert_to_imputation_list_df() - Convert list of
imputation_list_single()objects to animputation_list_df()object (i.e. a list ofimputation_df()objects's)
-
d_lagscale() - Calculate delta from a lagged scale coefficient
-
delta_template() - Create a delta
data.frametemplate
-
draws() - Fit the base imputation model and get parameter estimates
-
eval_mmrm() - Evaluate a call to mmrm
-
expand()fill_locf()expand_locf() - Expand and fill in missing
data.framerows
-
extract_covariates() - Extract Variables from string vector
-
extract_data_nmar_as_na() - Set to NA outcome values that would be MNAR if they were missing (i.e. which occur after an ICE handled using a reference-based imputation strategy)
-
extract_draws() - Extract draws from a
stanfitobject
-
extract_imputed_df() - Extract imputed dataset
-
extract_imputed_dfs() - Extract imputed datasets
-
extract_params() - Extract parameters from a MMRM model
-
fit_mcmc() - Fit the base imputation model using a Bayesian approach
-
fit_mmrm() - Fit a MMRM model
-
format_method_descriptions() - Format method descriptions
-
generate_data_single() - Generate data for a single group
-
getStrategies() - Get imputation strategies
-
get_ESS() - Extract the Effective Sample Size (ESS) from a
stanfitobject
-
get_bootstrap_stack() - Creates a stack object populated with bootstrapped samples
-
get_conditional_parameters() - Derive conditional multivariate normal parameters
-
get_delta_template() - Get delta utility variables
-
get_draws_mle() - Fit the base imputation model on bootstrap samples
-
get_ests_bmlmi() - Von Hippel and Bartlett pooling of BMLMI method
-
get_example_data() - Simulate a realistic example dataset
-
get_jackknife_stack() - Creates a stack object populated with jackknife samples
-
get_mmrm_sample() - Fit MMRM and returns parameter estimates
-
get_pattern_groups() - Determine patients missingness group
-
get_pattern_groups_unique() - Get Pattern Summary
-
get_pool_components() - Expected Pool Components
-
get_visit_distribution_parameters() - Derive visit distribution parameters
-
has_class() - Does object have a class ?
-
ife() - if else
-
imputation_df() - Create a valid
imputation_dfobject
-
imputation_list_df() - List of imputations_df
-
imputation_list_single() - A collection of
imputation_singles()grouped by a single subjid ID
-
imputation_single() - Create a valid
imputation_singleobject
-
impute() - Create imputed datasets
-
impute_data_individual() - Impute data for a single subject
-
impute_internal() - Create imputed datasets
-
impute_outcome() - Sample outcome value
-
invert() - invert
-
invert_indexes() - Invert and derive indexes
-
is_absent() - Is value absent
-
is_char_fact() - Is character or factor
-
is_char_one() - Is single character
-
is_in_rbmi_development() - Is package in development mode?
-
is_num_char_fact() - Is character, factor or numeric
-
locf() - Last Observation Carried Forward
-
longDataConstructor - R6 Class for Storing / Accessing & Sampling Longitudinal Data
-
ls_design_equal()ls_design_counterfactual()ls_design_proportional() - Calculate design vector for the lsmeans
-
lsmeans() - Least Square Means
-
make_rbmi_cluster() - Create a
rbmiready cluster
-
mcse_jackknife()jackknife_se()mcse_combine_all_pars() - Internal MCSE Computations
-
method_bayes()method_approxbayes()method_condmean()method_bmlmi() - Set the multiple imputation methodology
-
par_lapply() - Parallelise Lapply
-
parametric_ci() - Calculate parametric confidence intervals
-
pool()as.data.frame(<pool>)print(<pool>)mcse()as.data.frame(<mcse>)print(<mcse>) - Pool analysis results obtained from the imputed datasets
-
pool_bootstrap_normal() - Bootstrap Pooling via normal approximation
-
pool_bootstrap_percentile() - Bootstrap Pooling via Percentiles
-
pool_internal() - Internal Pool Methods
-
prepare_stan_data() - Prepare input data to run the Stan model
-
print(<analysis>) - Print
analysisobject
-
print(<draws>) - Print
drawsobject
-
print(<imputation>) - Print
imputationobject
-
progressLogger - R6 Class for printing current sampling progress
-
pval_percentile() - P-value of percentile bootstrap
-
random_effects_expr() - Construct random effects formula
-
set_options() - rbmi settings
-
record() - Capture all Output
-
recursive_reduce() - recursive_reduce
-
remove_if_all_missing() - Remove subjects from dataset if they have no observed values
-
rubin_df() - Barnard and Rubin degrees of freedom adjustment
-
rubin_rules() - Combine estimates using Rubin's rules
-
sample_ids() - Sample Patient Ids
-
sample_list() - Create and validate a
sample_listobject
-
sample_mvnorm() - Sample random values from the multivariate normal distribution
-
sample_single() - Create object of
sample_singleclass
-
scalerConstructor - R6 Class for scaling (and un-scaling) design matrices
-
set_simul_pars() - Set simulation parameters of a study group.
-
set_vars() - Set key variables
-
simulate_data() - Generate data
-
simulate_dropout() - Simulate drop-out
-
simulate_ice() - Simulate intercurrent event
-
simulate_test_data()as_vcov() - Create simulated datasets
-
sort_by() - Sort
data.frame
-
split_dim() - Transform array into list of arrays
-
split_imputations() - Split a flat list of
imputation_single()into multipleimputation_df()'s by ID
-
str_contains() - Does a string contain a substring
-
string_pad() - string_pad
-
transpose_imputations() - Transpose imputations
-
transpose_results() - Transpose results object
-
transpose_samples() - Transpose samples
-
validate() - Generic validation method
-
validate(<analysis>) - Validate
analysisobjects
-
validate(<draws>) - Validate
drawsobject
-
validate(<is_mar>) - Validate
is_marfor a given subject
-
validate(<ivars>) - Validate inputs for
vars
-
validate(<references>) - Validate user supplied references
-
validate(<sample_list>) - Validate
sample_listobject
-
validate(<sample_single>) - Validate
sample_singleobject
-
validate(<simul_pars>) - Validate a
simul_parsobject
-
validate(<stan_data>) - Validate a
stan_dataobject
-
validate_analyse_pars() - Validate analysis results
-
validate_datalong()validate_datalong_varExists()validate_datalong_types()validate_datalong_notMissing()validate_datalong_complete()validate_datalong_unifromStrata()validate_dataice() - Validate a longdata object
-
validate_strategies() - Validate user specified strategies