Count the number of patients with particular flags
Source:R/count_patients_with_flags.R
count_patients_with_flags.Rd
The analyze function count_patients_with_flags()
creates a layout element to calculate counts of patients for
which user-specified flags are present.
This function analyzes primary analysis variable var
which indicates unique subject identifiers. Flags
variables to analyze are specified by the user via the flag_variables
argument, and must either take value
TRUE
(flag present) or FALSE
(flag absent) for each record.
If there are multiple records with the same flag present for a patient, only one occurrence is counted.
Usage
count_patients_with_flags(
lyt,
var,
flag_variables,
flag_labels = NULL,
var_labels = var,
show_labels = "hidden",
riskdiff = FALSE,
na_str = default_na_str(),
nested = TRUE,
...,
table_names = paste0("tbl_flags_", var),
.stats = "count_fraction",
.formats = list(count_fraction = format_count_fraction_fixed_dp),
.indent_mods = NULL,
.labels = NULL
)
s_count_patients_with_flags(
df,
.var,
flag_variables,
flag_labels = NULL,
.N_col,
.N_row,
denom = c("n", "N_col", "N_row")
)
a_count_patients_with_flags(
df,
labelstr = "",
flag_variables,
flag_labels = NULL,
denom = c("n", "N_col", "N_row"),
.N_col,
.N_row,
.df_row,
.var = NULL,
.stats = NULL,
.formats = NULL,
.labels = NULL,
.indent_mods = NULL,
na_str = default_na_str()
)
Arguments
- lyt
(
PreDataTableLayouts
)
layout that analyses will be added to.- var
(
string
)
single variable name that is passed byrtables
when requested by a statistics function.- flag_variables
(
character
)
a vector specifying the names oflogical
variables from analysis dataset used for counting the number of unique identifiers.- flag_labels
(
character
)
vector of labels to use for flag variables. If any labels are also specified via the.labels
parameter, the.labels
values will take precedence and replace these labels.- var_labels
(
character
)
variable labels.- show_labels
(
string
)
label visibility: one of "default", "visible" and "hidden".- riskdiff
(
flag
)
whether a risk difference column is present. When set toTRUE
,add_riskdiff()
must be used assplit_fun
in the prior column split of the table layout, specifying which columns should be compared. Seestat_propdiff_ci()
for details on risk difference calculation.- na_str
(
string
)
string used to replace allNA
or empty values in the output.- nested
(
flag
)
whether this layout instruction should be applied within the existing layout structure _if possible (TRUE
, the default) or as a new top-level element (FALSE
). Ignored if it would nest a split. underneath analyses, which is not allowed.- ...
additional arguments for the lower level functions.
- table_names
(
character
)
this can be customized in the case that the samevars
are analyzed multiple times, to avoid warnings fromrtables
.- .stats
-
(
character
)
statistics to select for the table.Options are:
'n', 'count', 'count_fraction', 'count_fraction_fixed_dp', 'n_blq'
- .formats
(named
character
orlist
)
formats for the statistics. See Details inanalyze_vars
for more information on the"auto"
setting.- .indent_mods
(named
integer
)
indent modifiers for the labels. Defaults to 0, which corresponds to the unmodified default behavior. Can be negative.- .labels
(named
character
)
labels for the statistics (without indent).- df
(
data.frame
)
data set containing all analysis variables.- .var
(
string
)
name of the column that contains the unique identifier.- .N_col
(
integer(1)
)
column-wise N (column count) for the full column being analyzed that is typically passed byrtables
.- .N_row
(
integer(1)
)
row-wise N (row group count) for the group of observations being analyzed (i.e. with no column-based subsetting) that is typically passed byrtables
.- denom
-
(
string
)
choice of denominator for proportion. Options are:n
: number of values in this row and column intersection.N_row
: total number of values in this row across columns.N_col
: total number of values in this column across rows.
- labelstr
(
string
)
label of the level of the parent split currently being summarized (must be present as second argument in Content Row Functions). Seertables::summarize_row_groups()
for more information.- .df_row
(
data.frame
)
data frame across all of the columns for the given row split.
Value
count_patients_with_flags()
returns a layout object suitable for passing to further layouting functions, or tortables::build_table()
. Adding this function to anrtable
layout will add formatted rows containing the statistics froms_count_patients_with_flags()
to the table layout.
s_count_patients_with_flags()
returns the count and the fraction of unique identifiers with each particular flag as a list of statisticsn
,count
,count_fraction
, andn_blq
, with one element per flag.
a_count_patients_with_flags()
returns the corresponding list with formattedrtables::CellValue()
.
Functions
count_patients_with_flags()
: Layout-creating function which can take statistics function arguments and additional format arguments. This function is a wrapper forrtables::analyze()
.s_count_patients_with_flags()
: Statistics function which counts the number of patients for which a particular flag variable isTRUE
.a_count_patients_with_flags()
: Formatted analysis function which is used asafun
incount_patients_with_flags()
.
Note
If flag_labels
is not specified, variables labels will be extracted from df
. If variables are not
labeled, variable names will be used instead. Alternatively, a named vector
can be supplied to
flag_variables
such that within each name-value pair the name corresponds to the variable name and the value is
the label to use for this variable.
Examples
# Add labelled flag variables to analysis dataset.
adae <- tern_ex_adae %>%
dplyr::mutate(
fl1 = TRUE %>% with_label("Total AEs"),
fl2 = (TRTEMFL == "Y") %>%
with_label("Total number of patients with at least one adverse event"),
fl3 = (TRTEMFL == "Y" & AEOUT == "FATAL") %>%
with_label("Total number of patients with fatal AEs"),
fl4 = (TRTEMFL == "Y" & AEOUT == "FATAL" & AEREL == "Y") %>%
with_label("Total number of patients with related fatal AEs")
)
lyt <- basic_table() %>%
split_cols_by("ARM") %>%
add_colcounts() %>%
count_patients_with_flags(
"SUBJID",
flag_variables = c("fl1", "fl2", "fl3", "fl4"),
denom = "N_col"
)
build_table(lyt, adae, alt_counts_df = tern_ex_adsl)
#> A: Drug X B: Placebo C: Combination
#> (N=69) (N=73) (N=58)
#> ———————————————————————————————————————————————————————————————————————————————————————————————————
#> Total AEs 59 (85.5%) 57 (78.1%) 48 (82.8%)
#> Total number of patients with at least one adverse event 59 (85.5%) 57 (78.1%) 48 (82.8%)
#> Total number of patients with fatal AEs 28 (40.6%) 31 (42.5%) 20 (34.5%)
#> Total number of patients with related fatal AEs 28 (40.6%) 31 (42.5%) 20 (34.5%)
# `s_count_patients_with_flags()`
s_count_patients_with_flags(
adae,
"SUBJID",
flag_variables = c("fl1", "fl2", "fl3", "fl4"),
denom = "N_col",
.N_col = 1000
)
#> $n
#> $n$`Total AEs`
#> [1] 164
#>
#> $n$`Total number of patients with at least one adverse event`
#> [1] 164
#>
#> $n$`Total number of patients with fatal AEs`
#> [1] 164
#>
#> $n$`Total number of patients with related fatal AEs`
#> [1] 164
#>
#>
#> $count
#> $count$`Total AEs`
#> [1] 164
#>
#> $count$`Total number of patients with at least one adverse event`
#> [1] 164
#>
#> $count$`Total number of patients with fatal AEs`
#> [1] 79
#>
#> $count$`Total number of patients with related fatal AEs`
#> [1] 79
#>
#>
#> $count_fraction
#> $count_fraction$`Total AEs`
#> [1] 164.000 0.164
#>
#> $count_fraction$`Total number of patients with at least one adverse event`
#> [1] 164.000 0.164
#>
#> $count_fraction$`Total number of patients with fatal AEs`
#> [1] 79.000 0.079
#>
#> $count_fraction$`Total number of patients with related fatal AEs`
#> [1] 79.000 0.079
#>
#>
#> $n_blq
#> $n_blq$`Total AEs`
#> [1] 0
#>
#> $n_blq$`Total number of patients with at least one adverse event`
#> [1] 0
#>
#> $n_blq$`Total number of patients with fatal AEs`
#> [1] 0
#>
#> $n_blq$`Total number of patients with related fatal AEs`
#> [1] 0
#>
#>
a_count_patients_with_flags(
adae,
.N_col = 10L,
.N_row = 10L,
.var = "USUBJID",
flag_variables = c("fl1", "fl2", "fl3", "fl4")
)
#> RowsVerticalSection (in_rows) object print method:
#> ----------------------------
#> row_name formatted_cell indent_mod
#> 1 n.fl1 164 0
#> 2 n.fl2 164 0
#> 3 n.fl3 164 0
#> 4 n.fl4 164 0
#> 5 count.fl1 164 0
#> 6 count.fl2 164 0
#> 7 count.fl3 79 0
#> 8 count.fl4 79 0
#> 9 count_fraction.fl1 164 (100%) 0
#> 10 count_fraction.fl2 164 (100%) 0
#> 11 count_fraction.fl3 79 (48.2%) 0
#> 12 count_fraction.fl4 79 (48.2%) 0
#> 13 count_fraction_fixed_dp.fl1 164 (100%) 0
#> 14 count_fraction_fixed_dp.fl2 164 (100%) 0
#> 15 count_fraction_fixed_dp.fl3 79 (48.2%) 0
#> 16 count_fraction_fixed_dp.fl4 79 (48.2%) 0
#> 17 n_blq.fl1 0 0
#> 18 n_blq.fl2 0 0
#> 19 n_blq.fl3 0 0
#> 20 n_blq.fl4 0 0
#> row_label
#> 1 Total AEs
#> 2 Total number of patients with at least one adverse event
#> 3 Total number of patients with fatal AEs
#> 4 Total number of patients with related fatal AEs
#> 5 Total AEs
#> 6 Total number of patients with at least one adverse event
#> 7 Total number of patients with fatal AEs
#> 8 Total number of patients with related fatal AEs
#> 9 Total AEs
#> 10 Total number of patients with at least one adverse event
#> 11 Total number of patients with fatal AEs
#> 12 Total number of patients with related fatal AEs
#> 13 Total AEs
#> 14 Total number of patients with at least one adverse event
#> 15 Total number of patients with fatal AEs
#> 16 Total number of patients with related fatal AEs
#> 17 Total AEs
#> 18 Total number of patients with at least one adverse event
#> 19 Total number of patients with fatal AEs
#> 20 Total number of patients with related fatal AEs