Introduction to tern.rbmi
This vignette shows the general purpose and syntax of the
tern.rbmi
R package. The tern.rbmi
provides an
interface for Reference Based Multiple Imputation (rbmi
)
within the tern framework. For details of the rbmi
package,
please see Reference Based
Multiple Imputation (rbmi). The basic usage of rbmi
core functions is described in the quickstart
vignette:
vignette(topic = "quickstart", package = "rbmi")
Example of using tern.rbmi
The rbmi
package consists of 4 core functions (plus
several helper functions) which are typically called in sequence:
-
draws()
- fits the imputation models and stores their parameters -
impute()
- creates multiple imputed datasets -
analyse()
- analyses each of the multiple imputed datasets -
pool()
- combines the analysis results across imputed datasets into a single statistic
The Data
We use a publicly available example dataset from an antidepressant
clinical trial of an active drug versus placebo. The relevant endpoint
is the Hamilton 17-item depression rating scale (HAMD17
)
which was assessed at baseline and at weeks 1, 2, 4, and 6. Study drug
discontinuation occurred in 24% of subjects from the active drug and 26%
of subjects from placebo. All data after study drug discontinuation are
missing and there is a single additional intermittent missing
observation.
library(tern.rbmi)
#> Loading required package: rbmi
#> Loading required package: tern
#> Loading required package: rtables
#> Loading required package: formatters
#>
#> Attaching package: 'formatters'
#> The following object is masked from 'package:base':
#>
#> %||%
#> Loading required package: magrittr
#>
#> Attaching package: 'rtables'
#> The following object is masked from 'package:utils':
#>
#> str
#> Registered S3 method overwritten by 'tern':
#> method from
#> tidy.glm broom
library(dplyr)
#>
#> Attaching package: 'dplyr'
#> The following objects are masked from 'package:stats':
#>
#> filter, lag
#> The following objects are masked from 'package:base':
#>
#> intersect, setdiff, setequal, union
data <- antidepressant_data
levels(data$THERAPY) <- c("PLACEBO", "DRUG") # This is important! The order defines the computation order later
missing_var <- "CHANGE"
vars <- list(
id = "PATIENT",
visit = "VISIT",
expand_vars = c("BASVAL", "THERAPY"),
group = "THERAPY"
)
covariates <- list(
draws = c("BASVAL*VISIT", "THERAPY*VISIT"),
analyse = c("BASVAL")
)
data <- data %>%
dplyr::select(PATIENT, THERAPY, VISIT, BASVAL, THERAPY, CHANGE) %>%
dplyr::mutate(dplyr::across(.cols = vars$id, ~ as.factor(.x))) %>%
dplyr::arrange(dplyr::across(.cols = c(vars$id, vars$visit)))
# Use expand_locf to add rows corresponding to visits with missing outcomes to the dataset
data_full <- do.call(
expand_locf,
args = list(
data = data,
vars = c(vars$expand_vars, vars$group),
group = vars$id,
order = c(vars$id, vars$visit)
) %>%
append(lapply(data[c(vars$id, vars$visit)], levels))
)
data_full <- data_full %>%
dplyr::group_by(dplyr::across(vars$id)) %>%
dplyr::mutate(!!vars$group := Filter(Negate(is.na), .data[[vars$group]])[1])
# there are duplicates - use first value
data_full <- data_full %>%
dplyr::group_by(dplyr::across(c(vars$id, vars$group, vars$visit))) %>%
dplyr::slice(1) %>%
dplyr::ungroup()
# need to have a single ID column
data_full <- data_full %>%
tidyr::unite("TMP_ID", dplyr::all_of(vars$id), sep = "_#_", remove = FALSE) %>%
dplyr::mutate(TMP_ID = as.factor(TMP_ID))
Draws
The rbmi::draws()
function fits the imputation models
and stores the corresponding parameter estimates or Bayesian posterior
parameter draws. The three main inputs to the rbmi::draws()
function are:
- data - The primary longitudinal data.frame containing the outcome variable and all covariates.
- data_ice - A data.frame which specifies the first visit affected by an intercurrent event (ICE) and the imputation strategy for handling missing outcome data after the ICE. At most one ICE which is to be imputed by a non-MAR strategy is allowed per subject.
- method - The statistical method used to fit the imputation models and to create imputed datasets.
Define key variables
Define the names of key variables in our dataset and the covariates
included in the imputation model using rbmi::set_vars()
.
Note that the covariates argument can also include interaction
terms.
debug_mode <- FALSE
draws_vars <- rbmi::set_vars(
outcome = missing_var,
visit = vars$visit,
group = vars$group,
covariates = covariates$draws
)
draws_vars$subjid <- "TMP_ID"
Define which imputation method to use, then create samples for the
imputation parameters by running the draws()
function.
draws_method <- method_bayes()
draws_obj <- rbmi::draws(
data = data_full,
data_ice = data_ice,
vars = draws_vars,
method = draws_method
)
#>
#> SAMPLING FOR MODEL 'MMRM' NOW (CHAIN 1).
#> Chain 1:
#> Chain 1: Gradient evaluation took 0.000368 seconds
#> Chain 1: 1000 transitions using 10 leapfrog steps per transition would take 3.68 seconds.
#> Chain 1: Adjust your expectations accordingly!
#> Chain 1:
#> Chain 1:
#> Chain 1: Iteration: 1 / 1200 [ 0%] (Warmup)
#> Chain 1: Iteration: 120 / 1200 [ 10%] (Warmup)
#> Chain 1: Iteration: 201 / 1200 [ 16%] (Sampling)
#> Chain 1: Iteration: 320 / 1200 [ 26%] (Sampling)
#> Chain 1: Iteration: 440 / 1200 [ 36%] (Sampling)
#> Chain 1: Iteration: 560 / 1200 [ 46%] (Sampling)
#> Chain 1: Iteration: 680 / 1200 [ 56%] (Sampling)
#> Chain 1: Iteration: 800 / 1200 [ 66%] (Sampling)
#> Chain 1: Iteration: 920 / 1200 [ 76%] (Sampling)
#> Chain 1: Iteration: 1040 / 1200 [ 86%] (Sampling)
#> Chain 1: Iteration: 1160 / 1200 [ 96%] (Sampling)
#> Chain 1: Iteration: 1200 / 1200 [100%] (Sampling)
#> Chain 1:
#> Chain 1: Elapsed Time: 0.556 seconds (Warm-up)
#> Chain 1: 2.384 seconds (Sampling)
#> Chain 1: 2.94 seconds (Total)
#> Chain 1:
#> Warning in fit_mcmc(designmat = model_df_scaled[, -1, drop = FALSE], outcome = model_df_scaled[, : The largest R-hat is 1.16, indicating chains have not mixed.
#> Running the chains for more iterations may help. See
#> https://mc-stan.org/misc/warnings.html#r-hat
Impute
The next step is to use the parameters from the imputation model to
generate the imputed datasets. This is done via the
rbmi::impute()
function. The function only has two key
inputs: the imputation model output from rbmi::draws()
and
the reference groups relevant to reference-based imputation methods. Its
usage is thus:
Analyze
The next step is to run the analysis model on each imputed dataset.
This is done by defining an analysis function and then calling
rbmi::analyse()
to apply this function to each imputed
dataset.
# Define analysis model
analyse_fun <- ancova
ref_levels <- levels(impute_obj$data$group[[1]])
names(ref_levels) <- c("ref", "alt")
analyse_obj <- rbmi::analyse(
imputations = impute_obj,
fun = analyse_fun,
vars = rbmi::set_vars(
subjid = "TMP_ID",
outcome = missing_var,
visit = vars$visit,
group = vars$group,
covariates = covariates$analyse
)
)
Pool
The rbmi::pool()
function can be used to summarize the
analysis results across multiple imputed datasets to provide an overall
statistic with a standard error, confidence intervals and a p-value for
the hypothesis test of the null hypothesis that the effect is equal to
0.
Create output
Finally create output with rtables
and tern
packages
library(broom)
df <- tidy(pool_obj)
df
#> group est se_est lower_cl_est upper_cl_est est_contr se_contr
#> 1 ref -1.615820 0.4862316 -2.575771 -0.6558685 NA NA
#> 2 alt -1.707626 0.4749573 -2.645319 -0.7699335 -0.09180645 0.6826279
#> 3 ref -4.251655 0.6496811 -5.534780 -2.9685296 NA NA
#> 4 alt -2.809056 0.6324950 -4.058140 -1.5599722 1.44259881 0.9093545
#> 5 ref -6.440519 0.7279670 -7.880636 -5.0004032 NA NA
#> 6 alt -4.194777 0.6890509 -5.556260 -2.8332948 2.24574209 1.0256389
#> 7 ref -7.682997 0.8037188 -9.274081 -6.0919124 NA NA
#> 8 alt -4.868448 0.7615558 -6.374030 -3.3628674 2.81454841 1.1248318
#> lower_cl_contr upper_cl_contr p_value relative_reduc visit conf_level
#> 1 NA NA NA NA 4 0.95
#> 2 -1.4394968 1.255884 0.89317724 0.05681725 4 0.95
#> 3 NA NA NA NA 5 0.95
#> 4 -0.3532555 3.238453 0.11461872 -0.33930289 5 0.95
#> 5 NA NA NA NA 6 0.95
#> 6 0.2164236 4.275061 0.03035798 -0.34868960 6 0.95
#> 7 NA NA NA NA 7 0.95
#> 8 0.5881156 5.040981 0.01364909 -0.36633471 7 0.95
Final product, reshape rbmi
final results to nicely
formatted rtable
object.
basic_table() %>%
split_cols_by("group", ref_group = levels(df$group)[1]) %>%
split_rows_by("visit", split_label = "Visit", label_pos = "topleft") %>%
summarize_rbmi() %>%
build_table(df)
#> Visit ref alt
#> —————————————————————————————————————————————————————————————————————————
#> 4
#> Adjusted Mean (SE) -1.616 (0.486) -1.708 (0.475)
#> 95% CI (-2.576, -0.656) (-2.645, -0.770)
#> Difference in Adjusted Means (SE) -0.092 (0.683)
#> 95% CI (-1.439, 1.256)
#> Relative Reduction (%) 5.7%
#> p-value (RBMI) 0.8932
#> 5
#> Adjusted Mean (SE) -4.252 (0.650) -2.809 (0.632)
#> 95% CI (-5.535, -2.969) (-4.058, -1.560)
#> Difference in Adjusted Means (SE) 1.443 (0.909)
#> 95% CI (-0.353, 3.238)
#> Relative Reduction (%) -33.9%
#> p-value (RBMI) 0.1146
#> 6
#> Adjusted Mean (SE) -6.441 (0.728) -4.195 (0.689)
#> 95% CI (-7.881, -5.000) (-5.556, -2.833)
#> Difference in Adjusted Means (SE) 2.246 (1.026)
#> 95% CI (0.216, 4.275)
#> Relative Reduction (%) -34.9%
#> p-value (RBMI) 0.0304
#> 7
#> Adjusted Mean (SE) -7.683 (0.804) -4.868 (0.762)
#> 95% CI (-9.274, -6.092) (-6.374, -3.363)
#> Difference in Adjusted Means (SE) 2.815 (1.125)
#> 95% CI (0.588, 5.041)
#> Relative Reduction (%) -36.6%
#> p-value (RBMI) 0.0136