Analyze function for tabulating LS means estimates from tidied rbmi pool results.
      Source: R/tabulate_rbmi.R
      summarize_rbmi.RdUsage
summarize_rbmi(
  lyt,
  ...,
  table_names = "rbmi_summary",
  .stats = NULL,
  .formats = NULL,
  .indent_mods = NULL,
  .labels = NULL
)Arguments
- lyt
 (
layout)
input layout where analyses will be added to.- ...
 additional argument.
- table_names
 (
character)
this can be customized in case that the samevarsare analyzed multiple times, to avoid warnings fromrtables.- .stats
 (
character)
statistics to select for the table.- .formats
 (named
characterorlist)
formats for the statistics.- .indent_mods
 (named
integer)
indent modifiers for the labels.- .labels
 (named
character)
labels for the statistics (without indent).
Examples
library(rtables)
library(dplyr)
library(broom)
data("rbmi_test_data")
pool_obj <- rbmi_test_data
df <- tidy(pool_obj)
basic_table() %>%
  split_cols_by("group", ref_group = levels(df$group)[1]) %>%
  split_rows_by("visit", split_label = "Visit", label_pos = "topleft") %>%
  summarize_rbmi() %>%
  build_table(df)
#> Visit                                       ref                alt       
#> —————————————————————————————————————————————————————————————————————————
#> 4                                                                        
#>   Adjusted Mean (SE)                   -1.616 (0.486)     -1.708 (0.475) 
#>     95% CI                            (-2.576, -0.656)   (-2.645, -0.770)
#>   Difference in Adjusted Means (SE)                       -0.092 (0.683) 
#>     95% CI                                               (-1.439, 1.256) 
#>     Relative Reduction (%)                                     5.7%      
#>     p-value (RBMI)                                            0.8932     
#> 5                                                                        
#>   Adjusted Mean (SE)                   -4.225 (0.656)     -2.874 (0.648) 
#>     95% CI                            (-5.520, -2.930)   (-4.154, -1.593)
#>   Difference in Adjusted Means (SE)                       1.351 (0.922)  
#>     95% CI                                               (-0.470, 3.172) 
#>     Relative Reduction (%)                                    -32.0%     
#>     p-value (RBMI)                                            0.1447     
#> 6                                                                        
#>   Adjusted Mean (SE)                   -6.381 (0.703)     -4.159 (0.696) 
#>     95% CI                            (-7.771, -4.991)   (-5.536, -2.782)
#>   Difference in Adjusted Means (SE)                       2.222 (0.975)  
#>     95% CI                                                (0.296, 4.149) 
#>     Relative Reduction (%)                                    -34.8%     
#>     p-value (RBMI)                                            0.0241     
#> 7                                                                        
#>   Adjusted Mean (SE)                   -7.580 (0.791)     -4.760 (0.756) 
#>     95% CI                            (-9.145, -6.016)   (-6.254, -3.267)
#>   Difference in Adjusted Means (SE)                       2.820 (1.085)  
#>     95% CI                                                (0.676, 4.964) 
#>     Relative Reduction (%)                                    -37.2%     
#>     p-value (RBMI)                                            0.0103