This module produces a ggplot2::ggplot()
type confidence interval plot consistent with the TLG Catalog template
CIG01
available here.
Usage
tm_g_ci(
label,
x_var,
y_var,
color,
stat = c("mean", "median"),
conf_level = teal.transform::choices_selected(c(0.95, 0.9, 0.8), 0.95, keep_order =
TRUE),
plot_height = c(700L, 200L, 2000L),
plot_width = NULL,
pre_output = NULL,
post_output = NULL,
ggplot2_args = teal.widgets::ggplot2_args(),
transformators = list(),
decorators = list()
)
Arguments
- label
(
character
)
menu item label of the module in the teal app.- x_var
(
character
)
name of the treatment variable to put on the x-axis.- y_var
(
character
)
name of the response variable to put on the y-axis.- color
(
data_extract_spec
)
the group variable used to determine the plot colors, shapes, and line types.- stat
(
character
)
statistic to plot. Options are"mean"
and"median"
.- conf_level
(
teal.transform::choices_selected()
)
object with all available choices and pre-selected option for the confidence level, each within range of (0, 1).- plot_height
(
numeric
) optional
vector of length three withc(value, min, max)
. Specifies the height of the main plot and renders a slider on the plot to interactively adjust the plot height.- plot_width
(
numeric
) optional
vector of length three withc(value, min, max)
. Specifies the width of the main plot and renders a slider on the plot to interactively adjust the plot width.- pre_output
(
shiny.tag
) optional,
with text placed before the output to put the output into context. For example a title.- post_output
(
shiny.tag
) optional,
with text placed after the output to put the output into context. For example theshiny::helpText()
elements are useful.- ggplot2_args
(
ggplot2_args
) optional
object created byteal.widgets::ggplot2_args()
with settings for the module plot. The argument is merged with optionteal.ggplot2_args
and with default module arguments (hard coded in the module body). For more details, see the vignette:vignette("custom-ggplot2-arguments", package = "teal.widgets")
.- transformators
(
list
ofteal_transform_module
) that will be applied to transform module's data input. To learn more checkvignette("transform-input-data", package = "teal")
.- decorators
-
(named
list
of lists ofteal_transform_module
) optional, decorator for tables or plots included in the module output reported. The decorators are applied to the respective output objects.See section "Decorating Module" below for more details.
Decorating Module
This module generates the following objects, which can be modified in place using decorators:
plot
(ggplot
)
A Decorator is applied to the specific output using a named list of teal_transform_module
objects.
The name of this list corresponds to the name of the output to which the decorator is applied.
See code snippet below:
tm_g_ci(
..., # arguments for module
decorators = list(
plot = teal_transform_module(...) # applied only to `plot` output
)
)
For additional details and examples of decorators, refer to the vignette
vignette("decorate-module-output", package = "teal.modules.clinical")
.
To learn more please refer to the vignette
vignette("transform-module-output", package = "teal")
or the teal::teal_transform_module()
documentation.
See also
The TLG Catalog where additional example apps implementing this module can be found.
Examples
library(nestcolor)
data <- teal_data()
data <- within(data, {
ADSL <- tmc_ex_adsl
ADLB <- tmc_ex_adlb
})
join_keys(data) <- default_cdisc_join_keys[names(data)]
ADSL <- data[["ADSL"]]
ADLB <- data[["ADLB"]]
app <- init(
data = data,
modules = modules(
tm_g_ci(
label = "Confidence Interval Plot",
x_var = data_extract_spec(
dataname = "ADSL",
select = select_spec(
choices = c("ARMCD", "BMRKR2"),
selected = c("ARMCD"),
multiple = FALSE,
fixed = FALSE
)
),
y_var = data_extract_spec(
dataname = "ADLB",
filter = list(
filter_spec(
vars = "PARAMCD",
choices = levels(ADLB$PARAMCD),
selected = levels(ADLB$PARAMCD)[1],
multiple = FALSE,
label = "Select lab:"
),
filter_spec(
vars = "AVISIT",
choices = levels(ADLB$AVISIT),
selected = levels(ADLB$AVISIT)[1],
multiple = FALSE,
label = "Select visit:"
)
),
select = select_spec(
label = "Analyzed Value",
choices = c("AVAL", "CHG"),
selected = "AVAL",
multiple = FALSE,
fixed = FALSE
)
),
color = data_extract_spec(
dataname = "ADSL",
select = select_spec(
label = "Color by variable",
choices = c("SEX", "STRATA1", "STRATA2"),
selected = c("STRATA1"),
multiple = FALSE,
fixed = FALSE
)
)
)
)
)
#> Initializing tm_g_ci
if (interactive()) {
shinyApp(app$ui, app$server)
}