This function censors a study after a pre-specified number of events occurred.

censoringByNumberEvents(data, eventNum, typeEvent)

Arguments

data

(data.frame)
illness-death data set in 1rowPatient format.

eventNum

(int)
number of events.

typeEvent

(string)
type of event. Possible values are PFS and OS.

Value

This function returns a data set that is censored after eventNum of typeEvent-events occurred.

Examples

transition1 <- weibull_transition(h01 = 1.2, h02 = 1.5, h12 = 1.6, p01 = 0.8, p02 = 0.9, p12 = 1)
transition2 <- weibull_transition(h01 = 1, h02 = 1.3, h12 = 1.7, p01 = 1.1, p02 = 0.9, p12 = 1.1)

simStudy <- getOneClinicalTrial(
  nPat = c(20, 20), transitionByArm = list(transition1, transition2),
  dropout = list(rate = 0.3, time = 10),
  accrual = list(param = "time", value = 7)
)
simStudyWide <- getDatasetWideFormat(simStudy)
censoringByNumberEvents(data = simStudyWide, eventNum = 20, typeEvent = "PFS")
#>    id trt      PFStime PFSevent      OStime CensoredOS OSevent recruitTime
#> 1   4   1 0.6099896446        1 0.757117047          1       0   2.9732209
#> 2   5   1 0.2196439320        1 1.608989991          0       1   0.1379544
#> 3   6   1 0.9735937420        1 0.973593742          0       1   2.6522382
#> 4   8   1 0.0007249124        1 0.608592573          0       1   1.3130382
#> 5   9   1 0.1476712695        1 0.147671269          0       1   0.6245903
#> 6  10   1 0.2172866438        1 0.217286644          0       1   3.2920787
#> 7  12   1 0.0697977619        1 0.438450060          0       1   0.2555085
#> 8  14   1 0.0428412492        1 0.537508873          1       0   3.1928291
#> 9  15   1 0.8659055809        1 1.672215157          1       0   2.0581228
#> 10 16   1 0.0757965483        1 0.075796548          0       1   3.4623818
#> 11 20   1 0.5023043571        1 0.502304357          0       1   1.6043001
#> 12 21   2 0.1740500895        0 0.174050090          1       0   3.5562879
#> 13 22   2 0.0070729371        1 0.007072937          0       1   3.6633501
#> 14 23   2 0.0968432583        1 0.096843258          0       1   1.8063394
#> 15 25   2 0.2843334709        1 0.284333471          0       1   2.2641496
#> 16 27   2 0.2519173844        1 0.251917384          0       1   0.2851898
#> 17 28   2 0.4790230872        1 0.479023087          1       0   3.2513149
#> 18 30   2 0.2710699625        1 0.271069963          0       1   2.0685871
#> 19 31   2 0.1877215692        1 0.207519437          0       1   1.1860090
#> 20 35   2 0.0068587353        1 0.006858735          0       1   0.9052675
#> 21 39   2 0.1414939958        1 0.141493996          0       1   1.1071277
#> 22 40   2 0.5349011487        0 0.534901149          1       0   3.1954368
#>    OStimeCal PFStimeCal
#> 1  3.7303379  3.5832105
#> 2  1.7469443  0.3575983
#> 3  3.6258319  3.6258319
#> 4  1.9216308  1.3137631
#> 5  0.7722615  0.7722615
#> 6  3.5093653  3.5093653
#> 7  0.6939585  0.3253062
#> 8  3.7303379  3.2356703
#> 9  3.7303379  2.9240284
#> 10 3.5381784  3.5381784
#> 11 2.1066045  2.1066045
#> 12 3.7303379  3.7303379
#> 13 3.6704230  3.6704230
#> 14 1.9031827  1.9031827
#> 15 2.5484831  2.5484831
#> 16 0.5371072  0.5371072
#> 17 3.7303379  3.7303379
#> 18 2.3396570  2.3396570
#> 19 1.3935284  1.3737305
#> 20 0.9121262  0.9121262
#> 21 1.2486217  1.2486217
#> 22 3.7303379  3.7303379