Introduction
Reformatting in dunlin consists in replacing
predetermined values by another in particular variables for selected
tables of a data set stored.
This is performed in two steps:
A Reformatting Map (
ruleobject) is created which specifies the correspondence between the old and the new valuesThe reformatting itself is performed with the
reformat()function.
The Formatting Map Structure
The Reformatting Map is a rule object inheriting from
character. Its names are the new values to be used, and its
values are the old values to be used.
rule(A = "a", B = c("c", "d"))
#> Mapping of:
#> A <- "a"
#> B <- "c", "d"
#> Convert to <NA>: ""
#> Convert to factor: TRUE
#> Drop unused level: FALSE
#> NA-replacing level in last position: TRUEThis rule will replace “a” with “A”, replace “c” or “d” with “B”.
Calling reformat
reformat is a generic supports reformatting of
character or factor. Reformatting for other
types of variables is meaningless. reformat will also
preserve the attributes of the original data, e.g. the data type or
labels will be unchanged.
An example of reformatting character can be
r <- rule(A = "a", B = c("c", "d"))
reformat(c("a", "c", "d", NA), r)
#> [1] A B B <NA>
#> Levels: A BWe can see that the NA values are not changed.
Now we test the factor reformatting:
r <- rule(A = "a", B = c("c", "d"))
reformat(factor(c("a", "c", "d", NA)), r)
#> [1] A B B <NA>
#> Levels: A BThe NA values are also not changed. However, if we
including reformatting for the NA, there is something
different:
r <- rule(A = "a", C = NA, B = c("c", "d"))
reformat(factor(c("a", "c", "d", NA)), r)
#> [1] A B B C
#> Levels: A B CBy default, the level replacing NA is set as the last
one. This can be changed by setting .na_last = FALSE.
r <- rule(A = "a", C = NA, B = c("c", "d"))
reformat(factor(c("a", "c", "d", NA)), r, .na_last = FALSE)
#> [1] A B B C
#> Levels: A C BFor list of data.frames, the
format argument is actually a nested list of rule. The
first layer indicates the table names, the second layer indicates the
variables in that table. Reformatting is only available for columns of
characters or factors, reformatting columns of another types will result
in a warning.
Example
df1 <- data.frame(
"char" = c("", "b", NA, "a", "k", "x"),
"fact" = factor(c("f1", "f2", NA, NA, "f1", "f1"), levels = c("f2", "f1")),
"logi" = c(NA, FALSE, TRUE, NA, FALSE, NA)
)
df2 <- data.frame(
"char" = c("a", "b", NA, "a", "k", "x"),
"fact" = factor(c("f1", "f2", NA, NA, "f1", "f1"))
)
db <- list(df1 = df1, df2 = df2)
attr(db$df1$char, "label") <- "my label"
rule_map <- list(
df1 = list(
char = rule("Empty" = "", "B" = "b", "Not Available" = NA),
fact = rule("F1" = "f1"),
logi = rule()
),
df2 = list(
char = rule("Empty" = "", "A" = "a", "Not Available" = NA)
)
)
res <- reformat(db, rule_map, .na_last = TRUE)
#> Warning: Not implemented for class: logical! Returning original object.
res
#> $df1
#> char fact logi
#> 1 Empty F1 NA
#> 2 B f2 FALSE
#> 3 Not Available <NA> TRUE
#> 4 a <NA> NA
#> 5 k F1 FALSE
#> 6 x F1 NA
#>
#> $df2
#> char fact
#> 1 A f1
#> 2 b f2
#> 3 Not Available <NA>
#> 4 A <NA>
#> 5 k f1
#> 6 x f1Rule Attributes
The behavior of a rule can be further refined using special mapping
values. * .to_NA convert the specified character to
NA at the end of the process.
r <- rule(A = "a", B = c("c", "d"), .to_NA = c("x"))
reformat(c("a", "c", "d", NA, "x"), r)
#> [1] A B B <NA> <NA>
#> Levels: A B-
.dropspecifies whether unused levels should be dropped.
# With drop = FALSE
obj <- factor(c("a", "c", "d", NA), levels = c("d", "c", "a", "Not used"))
r <- rule(A = "a", B = c("c", "d"))
reformat(obj, r)
#> [1] A B B <NA>
#> Levels: A B Not used
# With drop = TRUE
obj <- factor(c("a", "c", "d", NA), levels = c("d", "c", "a", "Not used"))
r <- rule(A = "a", B = c("c", "d"), .drop = TRUE)
reformat(obj, r)
#> [1] A B B <NA>
#> Levels: A BNote that behavior of the rule can be overridden using the
corresponding arguments in reformat.
r <- rule(A = "a", B = c("c", "d"), .to_NA = c("x"), .drop = TRUE)
obj <- factor(c("a", "c", "d", NA, "x", "y"), levels = c("d", "c", "a", "Not used", "x", "y"))
reformat(obj, r)
#> [1] A B B <NA> <NA> y
#> Levels: A B y
# Override
reformat(obj, r, .to_NA = "y", .drop = FALSE)
#> [1] A B B <NA> x <NA>
#> Levels: A B Not used x