Skip to contents

The AET05 table produces the standard adverse event rate adjusted for patient-years at risk summary considering first occurrence.

Usage

aet05_main(
  adam_db,
  dataset = "adsaftte",
  arm_var = "ACTARM",
  lbl_overall = NULL,
  ...
)

aet05_pre(adam_db, dataset = "adsaftte", ...)

aet05_post(tlg, prune_0 = FALSE, ...)

aet05

Format

An object of class chevron_t of length 1.

Arguments

adam_db

(list of data.frames) object containing the ADaM datasets

dataset

(string) the name of a table in the adam_db object.

arm_var

(string) the arm variable used for arm splitting.

lbl_overall

(string) label used for overall column, if set to NULL the overall column is omitted

...

Further arguments passed to tern::control_incidence_rate().

tlg

(TableTree, Listing or ggplot) object typically produced by a main function.

prune_0

(flag) remove 0 count rows

Value

the main function returns an rtables object.

the preprocessing function returns a list of data.frame.

the postprocessing function returns an rtables object or an ElementaryTable (null report).

Details

  • Total patient-years at risk is the sum over all patients of the time intervals (in years).

  • Split columns by arm, typically ACTARM.

  • Split rows by parameter code.

  • AVAL is patient-years at risk.

  • N_EVENTS is the number of adverse events observed.

  • The table allows confidence level to be adjusted, default is 95%.

  • Keep zero count rows by default.

Functions

  • aet05_main(): Main TLG function

  • aet05_pre(): Preprocessing

  • aet05_post(): Postprocessing

Note

  • adam_db object must contain table named as dataset with the columns "PARAMCD", "PARAM", "AVAL", and "CNSR".

Examples

library(dplyr)
#> 
#> Attaching package: ‘dplyr’
#> The following object is masked from ‘package:testthat’:
#> 
#>     matches
#> The following objects are masked from ‘package:stats’:
#> 
#>     filter, lag
#> The following objects are masked from ‘package:base’:
#> 
#>     intersect, setdiff, setequal, union
library(dunlin)

proc_data <- log_filter(syn_data, PARAMCD == "AETTE1", "adsaftte")

run(aet05, proc_data)
#>                                                     A: Drug X       B: Placebo      C: Combination
#>                                                      (N=15)           (N=15)            (N=15)    
#>   ————————————————————————————————————————————————————————————————————————————————————————————————
#>   Time to first occurrence of any adverse event                                                   
#>     Total patient-years at risk                       31.0              9.0              22.0     
#>     Number of adverse events observed                   5               13                8       
#>     AE rate per 100 patient-years                     16.13           143.75            36.30     
#>     95% CI                                        (1.99, 30.27)   (65.61, 221.89)   (11.15, 61.45)

run(aet05, proc_data, conf_level = 0.90, conf_type = "exact")
#>                                                     A: Drug X       B: Placebo      C: Combination
#>                                                      (N=15)           (N=15)            (N=15)    
#>   ————————————————————————————————————————————————————————————————————————————————————————————————
#>   Time to first occurrence of any adverse event                                                   
#>     Total patient-years at risk                       31.0              9.0              22.0     
#>     Number of adverse events observed                   5               13                8       
#>     AE rate per 100 patient-years                     16.13           143.75            36.30     
#>     90% CI                                        (6.36, 33.91)   (85.03, 228.55)   (18.06, 65.50)