Skip to contents

EXT01 Table 2 (Supplementary) Exposure Summary Table with grouping options

Usage

ext01_2_main(
  adam_db,
  armvar = .study$actualarm,
  lbl_overall = .study$lbl_overall,
  prune_0 = TRUE,
  deco = std_deco("EXT01"),
  .study = list(actualarm = "ACTARM", lbl_overall = NULL)
)

ext01_2_lyt(
  armvar = .study$actualarm,
  summaryvars = c("AVAL", "AVALCAT1"),
  summaryvars_lbls = c("Summary", "Categories"),
  lbl_overall = .study$lbl_overall,
  deco = std_deco("EXT01"),
  .study = list(actualarm = "ACTARM", lbl_overall = NULL)
)

ext01_2_pre(
  adam_db,
  show_stats = .study$show_cont_stats,
  show_bins = .study$show_cat_stats,
  .study = list(show_cont_stats = c("ALL"), show_cat_stats = c("ALL")),
  ...
)

ext01_2

Format

An object of class chevron_tlg of length 1.

Arguments

adam_db

(dm) object containing the ADaM datasets

armvar

(character) variable used for column splitting

lbl_overall

(character) label used for overall column, if set to NULL the overall column is omitted

prune_0

(logical) remove 0 count rows

deco

(character) decoration with title, subtitles and main_footer content

.study

(list) with default values for the arguments of the function

summaryvars

(string) the name of the variable to be analyzed. By default "AVAL".

summaryvars_lbls

(string) the label associated with the analyzed variable.

show_stats

(vector of character) providing the name of the parameters whose statistical summary should be presented. To analyze all, provide show_stats = "ALL" (Default), to analyze none, provide show_stats = "".

show_bins

(vector of character) providing the name of the parameters whose categorical summary should be presented. To analyze all, provide show_bins = "ALL" (Default), to analyze none, provide show_bins = "".

...

not used.

Details

  • Supplementary Exposure table with binning of desired analysis values.

  • The n row provides the number of non-missing values. The percentages for categorical variables is based on n. The percentages for Total number of patients with at least one dose modification are based on the number of patients in the corresponding analysis population given by N.

  • Split columns by arm, typically ACTARM.

  • Does not include a total column by default.

  • Sorted by alphabetic order of the PARAM value. Transform to factor and re-level for custom order.

  • ANL01FL is not relevant subset

Functions

  • ext01_2_main(): Main TLG function

  • ext01_2_lyt(): Layout

  • ext01_2_pre(): Preprocessing

Examples

run(ext01_2, syn_test_data())
#>                                         A: Drug X        B: Placebo      C: Combination 
#>                                          (N=134)           (N=134)           (N=132)    
#> ————————————————————————————————————————————————————————————————————————————————————————
#> Total dose administered                                                                 
#>   n                                        134               134               132      
#>   Mean (SD)                          6655.5 (1209.6)   6401.2 (1269.9)   6776.4 (1212.5)
#>   Median                                 6720.0            6360.0            6720.0     
#>   Min - Max                          4320.0 - 9360.0   4080.0 - 9360.0   4320.0 - 9360.0
#>   n                                        134               134               132      
#>   5000-7000                            72 (53.7%)         71 (53%)         71 (53.8%)   
#>   7000-9000                            50 (37.3%)        42 (31.3%)        51 (38.6%)   
#>   <5000                                 10 (7.5%)        18 (13.4%)         7 (5.3%)    
#>   >9000                                 2 (1.5%)          3 (2.2%)          3 (2.3%)    
#> Total number of doses administered                                                      
#>   n                                        134               134               132      
#>   Mean (SD)                             7.0 (0.0)         7.0 (0.0)         7.0 (0.0)   
#>   Median                                   7.0               7.0               7.0      
#>   Min - Max                             7.0 - 7.0         7.0 - 7.0         7.0 - 7.0