Skip to contents

Analysis results data for survival quantiles and x-year survival estimates, extracted from a survival::survfit() model.

Usage

ard_survival_survfit(x, ...)

# S3 method for class 'survfit'
ard_survival_survfit(x, times = NULL, probs = NULL, type = NULL, ...)

# S3 method for class 'data.frame'
ard_survival_survfit(
  x,
  y,
  variables,
  times = NULL,
  probs = NULL,
  type = NULL,
  method.args = list(conf.int = 0.95),
  ...
)

Arguments

x

(survfit or data.frame)
an object of class survfit created with survival::survfit() or a data frame. See below for details.

...

These dots are for future extensions and must be empty.

times

(numeric)
a vector of times for which to return survival probabilities.

probs

(numeric)
a vector of probabilities with values in (0,1) specifying the survival quantiles to return.

type

(string or NULL)
type of statistic to report. Available for Kaplan-Meier time estimates only, otherwise type is ignored. Default is NULL. Must be one of the following:

type transformation
"survival" x
"risk" 1 - x
"cumhaz" -log(x)
y

(Surv or string)
an object of class Surv created using survival::Surv(). This object will be passed as the left-hand side of the formula constructed and passed to survival::survfit(). This object can also be passed as a string.

variables

(character)
stratification variables to be passed as the right-hand side of the formula constructed and passed to survival::survfit().

method.args

(named list)
named list of arguments that will be passed to survival::survfit().

Value

an ARD data frame of class 'card'

Details

  • Only one of either the times or probs parameters can be specified.

  • Times should be provided using the same scale as the time variable used to fit the provided survival fit model.

Formula Specification

When passing a survival::survfit() object to ard_survival_survfit(), the survfit() call must use an evaluated formula and not a stored formula. Including a proper formula in the call allows the function to accurately identify all variables included in the estimation. See below for examples:

library(cardx)
library(survival)

# include formula in `survfit()` call
survfit(Surv(time, status) ~ sex, lung) |> ard_survival_survfit(time = 500)

# you can also pass a data frame to `ard_survival_survfit()` as well.
lung |>
  ard_survival_survfit(y = Surv(time, status), variables = "sex", time = 500)

You cannot, however, pass a stored formula, e.g. survfit(my_formula, lung), but you can use stored formulas with rlang::inject(survfit(!!my_formula, lung)).

Variable Classes

When the survfit method is called, the class of the stratifying variables will be returned as a factor.

When the data frame method is called, the original classes are retained in the resulting ARD.

Examples

library(survival)
library(ggsurvfit)

survfit(Surv_CNSR(AVAL, CNSR) ~ TRTA, data = cards::ADTTE) |>
  ard_survival_survfit(times = c(60, 180))
#> {cards} data frame: 30 x 11
#>    group1 group1_level variable variable_level stat_name stat_label  stat
#> 1    TRTA      Placebo     time             60    n.risk  Number o…    59
#> 2    TRTA      Placebo     time             60  estimate  Survival… 0.768
#> 3    TRTA      Placebo     time             60 std.error  Standard… 0.047
#> 4    TRTA      Placebo     time             60 conf.high  CI Upper… 0.866
#> 5    TRTA      Placebo     time             60  conf.low  CI Lower… 0.682
#> 6    TRTA      Placebo     time            180    n.risk  Number o…    35
#> 7    TRTA      Placebo     time            180  estimate  Survival… 0.626
#> 8    TRTA      Placebo     time            180 std.error  Standard… 0.056
#> 9    TRTA      Placebo     time            180 conf.high  CI Upper… 0.746
#> 10   TRTA      Placebo     time            180  conf.low  CI Lower… 0.526
#>  20 more rows
#>  Use `print(n = ...)` to see more rows
#>  4 more variables: context, fmt_fn, warning, error

survfit(Surv_CNSR(AVAL, CNSR) ~ TRTA, data = cards::ADTTE, conf.int = 0.90) |>
  ard_survival_survfit(probs = c(0.25, 0.5, 0.75))
#> {cards} data frame: 27 x 11
#>    group1 group1_level variable variable_level stat_name stat_label stat
#> 1    TRTA      Placebo     prob           0.25  estimate  Survival…   70
#> 2    TRTA      Placebo     prob           0.25 conf.high  CI Upper…  110
#> 3    TRTA      Placebo     prob           0.25  conf.low  CI Lower…   42
#> 4    TRTA      Placebo     prob            0.5  estimate  Survival…   NA
#> 5    TRTA      Placebo     prob            0.5 conf.high  CI Upper…   NA
#> 6    TRTA      Placebo     prob            0.5  conf.low  CI Lower…   NA
#> 7    TRTA      Placebo     prob           0.75  estimate  Survival…   NA
#> 8    TRTA      Placebo     prob           0.75 conf.high  CI Upper…   NA
#> 9    TRTA      Placebo     prob           0.75  conf.low  CI Lower…   NA
#> 10   TRTA    Xanomeli…     prob           0.25  estimate  Survival…   14
#>  17 more rows
#>  Use `print(n = ...)` to see more rows
#>  4 more variables: context, fmt_fn, warning, error

cards::ADTTE |>
  ard_survival_survfit(y = Surv_CNSR(AVAL, CNSR), variables = c("TRTA", "SEX"), times = 90)
#> {cards} data frame: 30 x 13
#>    group1 group1_level group2 group2_level variable variable_level stat_name
#> 1    TRTA      Placebo    SEX            F     time             90    n.risk
#> 2    TRTA      Placebo    SEX            F     time             90  estimate
#> 3    TRTA      Placebo    SEX            F     time             90 std.error
#> 4    TRTA      Placebo    SEX            F     time             90 conf.high
#> 5    TRTA      Placebo    SEX            F     time             90  conf.low
#> 6    TRTA      Placebo    SEX            M     time             90    n.risk
#> 7    TRTA      Placebo    SEX            M     time             90  estimate
#> 8    TRTA      Placebo    SEX            M     time             90 std.error
#> 9    TRTA      Placebo    SEX            M     time             90 conf.high
#> 10   TRTA      Placebo    SEX            M     time             90  conf.low
#>    stat_label  stat
#> 1   Number o…    27
#> 2   Survival… 0.619
#> 3   Standard… 0.072
#> 4   CI Upper… 0.777
#> 5   CI Lower… 0.493
#> 6   Number o…    22
#> 7   Survival… 0.748
#> 8   Standard… 0.077
#> 9   CI Upper… 0.916
#> 10  CI Lower… 0.611
#>  20 more rows
#>  Use `print(n = ...)` to see more rows
#>  4 more variables: context, fmt_fn, warning, error

# Competing Risks Example ---------------------------
set.seed(1)
ADTTE_MS <- cards::ADTTE %>%
  dplyr::mutate(
    CNSR = dplyr::case_when(
      CNSR == 0 ~ "censor",
      runif(dplyr::n()) < 0.5 ~ "death from cancer",
      TRUE ~ "death other causes"
    ) %>% factor()
  )

survfit(Surv(AVAL, CNSR) ~ TRTA, data = ADTTE_MS) %>%
  ard_survival_survfit(times = c(60, 180))
#> Multi-state model detected. Showing probabilities into state 'death from
#> cancer'.
#> {cards} data frame: 30 x 11
#>    group1 group1_level variable variable_level stat_name stat_label  stat
#> 1    TRTA      Placebo     time             60    n.risk  Number o…    59
#> 2    TRTA      Placebo     time             60  estimate  Survival… 0.054
#> 3    TRTA      Placebo     time             60 std.error  Standard… 0.026
#> 4    TRTA      Placebo     time             60 conf.high  CI Upper…  0.14
#> 5    TRTA      Placebo     time             60  conf.low  CI Lower… 0.021
#> 6    TRTA      Placebo     time            180    n.risk  Number o…    35
#> 7    TRTA      Placebo     time            180  estimate  Survival… 0.226
#> 8    TRTA      Placebo     time            180 std.error  Standard… 0.054
#> 9    TRTA      Placebo     time            180 conf.high  CI Upper… 0.361
#> 10   TRTA      Placebo     time            180  conf.low  CI Lower… 0.142
#>  20 more rows
#>  Use `print(n = ...)` to see more rows
#>  4 more variables: context, fmt_fn, warning, error