The analyze function estimate_incidence_rate()
creates a layout element to estimate an event rate adjusted for
person-years at risk, otherwise known as incidence rate. The primary analysis variable specified via vars
is
the person-years at risk. In addition to this variable, the n_events
variable for number of events observed (where
a value of 1 means an event was observed and 0 means that no event was observed) must also be specified.
Usage
estimate_incidence_rate(
lyt,
vars,
n_events,
id_var = "USUBJID",
control = control_incidence_rate(),
na_str = default_na_str(),
nested = TRUE,
summarize = FALSE,
label_fmt = "%s - %.labels",
...,
show_labels = "hidden",
table_names = vars,
.stats = c("person_years", "n_events", "rate", "rate_ci"),
.formats = NULL,
.labels = NULL,
.indent_mods = NULL
)
s_incidence_rate(
df,
.var,
n_events,
is_event = lifecycle::deprecated(),
id_var = "USUBJID",
control = control_incidence_rate()
)
a_incidence_rate(
df,
labelstr = "",
.var,
.df_row,
n_events,
id_var = "USUBJID",
control = control_incidence_rate(),
.stats = NULL,
.formats = c(person_years = "xx.x", n_events = "xx", rate = "xx.xx", rate_ci =
"(xx.xx, xx.xx)", n_unique = "xx", n_rate = "xx (xx.x)"),
.labels = NULL,
.indent_mods = NULL,
na_str = default_na_str(),
label_fmt = "%s - %.labels"
)
Arguments
- lyt
(
PreDataTableLayouts
)
layout that analyses will be added to.- vars
(
character
)
variable names for the primary analysis variable to be iterated over.- n_events
(
string
)
name of integer variable indicating whether an event has been observed (1) or not (0).- id_var
(
string
)
name of variable used as patient identifier if"n_unique"
is included in.stats
. Defaults to"USUBJID"
.- control
-
(
list
)
parameters for estimation details, specified by using the helper functioncontrol_incidence_rate()
. Possible parameter options are:conf_level
(proportion
)
confidence level for the estimated incidence rate.conf_type
(string
)normal
(default),normal_log
,exact
, orbyar
for confidence interval type.input_time_unit
(string
)day
,week
,month
, oryear
(default) indicating time unit for data input.num_pt_year
(numeric
)
time unit for desired output (in person-years).
- na_str
(
string
)
string used to replace allNA
or empty values in the output.- nested
(
flag
)
whether this layout instruction should be applied within the existing layout structure _if possible (TRUE
, the default) or as a new top-level element (FALSE
). Ignored if it would nest a split. underneath analyses, which is not allowed.- summarize
(
flag
)
whether the function should act as an analyze function (summarize = FALSE
), or a summarize function (summarize = TRUE
). Defaults toFALSE
.- label_fmt
(
string
)
how labels should be formatted after a row split occurs ifsummarize = TRUE
. The string should use"%s"
to represent row split levels, and"%.labels"
to represent labels supplied to the.labels
argument. Defaults to"%s - %.labels"
.- ...
additional arguments for the lower level functions.
- show_labels
(
string
)
label visibility: one of "default", "visible" and "hidden".- table_names
(
character
)
this can be customized in the case that the samevars
are analyzed multiple times, to avoid warnings fromrtables
.- .stats
-
(
character
)
statistics to select for the table.Options are:
'person_years', 'n_events', 'rate', 'rate_ci', 'n_unique', 'n_rate'
- .formats
(named
character
orlist
)
formats for the statistics. See Details inanalyze_vars
for more information on the"auto"
setting.- .labels
(named
character
)
labels for the statistics (without indent).- .indent_mods
(named
integer
)
indent modifiers for the labels. Defaults to 0, which corresponds to the unmodified default behavior. Can be negative.- df
(
data.frame
)
data set containing all analysis variables.- .var
(
string
)
single variable name that is passed byrtables
when requested by a statistics function.- is_event
(
flag
)TRUE
if event,FALSE
if time to event is censored.- labelstr
(
string
)
label of the level of the parent split currently being summarized (must be present as second argument in Content Row Functions). Seertables::summarize_row_groups()
for more information.- .df_row
(
data.frame
)
data frame across all of the columns for the given row split.
Value
estimate_incidence_rate()
returns a layout object suitable for passing to further layouting functions, or tortables::build_table()
. Adding this function to anrtable
layout will add formatted rows containing the statistics froms_incidence_rate()
to the table layout.
-
s_incidence_rate()
returns the following statistics:person_years
: Total person-years at risk.n_events
: Total number of events observed.rate
: Estimated incidence rate.rate_ci
: Confidence interval for the incidence rate.n_unique
: Total number of patients with at least one event observed.n_rate
: Total number of events observed & estimated incidence rate.
a_incidence_rate()
returns the corresponding list with formattedrtables::CellValue()
.
Functions
estimate_incidence_rate()
: Layout-creating function which can take statistics function arguments and additional format arguments. This function is a wrapper forrtables::analyze()
.s_incidence_rate()
: Statistics function which estimates the incidence rate and the associated confidence interval.a_incidence_rate()
: Formatted analysis function which is used asafun
inestimate_incidence_rate()
.
See also
control_incidence_rate()
and helper functions h_incidence_rate.
Examples
df <- data.frame(
USUBJID = as.character(seq(6)),
CNSR = c(0, 1, 1, 0, 0, 0),
AVAL = c(10.1, 20.4, 15.3, 20.8, 18.7, 23.4),
ARM = factor(c("A", "A", "A", "B", "B", "B")),
STRATA1 = factor(c("X", "Y", "Y", "X", "X", "Y"))
)
df$n_events <- 1 - df$CNSR
basic_table(show_colcounts = TRUE) %>%
split_cols_by("ARM") %>%
estimate_incidence_rate(
vars = "AVAL",
n_events = "n_events",
control = control_incidence_rate(
input_time_unit = "month",
num_pt_year = 100
)
) %>%
build_table(df)
#> A B
#> (N=3) (N=3)
#> —————————————————————————————————————————————————————————————————————
#> Total patient-years at risk 3.8 5.2
#> Number of adverse events observed 1 3
#> AE rate per 100 patient-years 26.20 57.23
#> 95% CI (-25.15, 77.55) (-7.53, 122.00)
# summarize = TRUE
basic_table(show_colcounts = TRUE) %>%
split_cols_by("ARM") %>%
split_rows_by("STRATA1", child_labels = "visible") %>%
estimate_incidence_rate(
vars = "AVAL",
n_events = "n_events",
.stats = c("n_unique", "n_rate"),
summarize = TRUE,
label_fmt = "%.labels"
) %>%
build_table(df)
#> A B
#> (N=3) (N=3)
#> ———————————————————————————————————————————————————————————————————————————————————————
#> X
#> Total number of patients with at least one adverse event 1 2
#> Number of adverse events observed (AE rate per 100 patient-years) 1 (9.9) 2 (5.1)
#> Y
#> Total number of patients with at least one adverse event 0 1
#> Number of adverse events observed (AE rate per 100 patient-years) 0 (0.0) 1 (4.3)
a_incidence_rate(
df,
.var = "AVAL",
.df_row = df,
n_events = "n_events"
)
#> RowsVerticalSection (in_rows) object print method:
#> ----------------------------
#> row_name formatted_cell indent_mod
#> 1 person_years 108.7 0
#> 2 n_events 4 0
#> 3 rate 3.68 0
#> 4 rate_ci (0.07, 7.29) 0
#> 5 n_unique 4 0
#> 6 n_rate 4 (3.7) 0
#> row_label
#> 1 Total patient-years at risk
#> 2 Number of adverse events observed
#> 3 AE rate per 100 patient-years
#> 4 95% CI
#> 5 Total number of patients with at least one adverse event
#> 6 Number of adverse events observed (AE rate per 100 patient-years)