Usage
prop_diff_wald(rsp, grp, conf_level = 0.95, correct = FALSE)
prop_diff_ha(rsp, grp, conf_level)
prop_diff_nc(rsp, grp, conf_level, correct = FALSE)
prop_diff_cmh(rsp, grp, strata, conf_level = 0.95)
prop_diff_strat_nc(
rsp,
grp,
strata,
weights_method = c("cmh", "wilson_h"),
conf_level = 0.95,
correct = FALSE
)
Arguments
- rsp
(
logical
)
vector indicating whether each subject is a responder or not.- grp
(
factor
)
vector assigning observations to one out of two groups (e.g. reference and treatment group).- conf_level
(
proportion
)
confidence level of the interval.- correct
(
flag
)
whether to include the continuity correction. For further information, seestats::prop.test()
.- strata
(
factor
)
variable with one level per stratum and same length asrsp
.- weights_method
(
string
)
weights method. Can be either"cmh"
or"heuristic"
and directs the way weights are estimated.
Value
A named list
of elements diff
(proportion difference) and diff_ci
(proportion difference confidence interval).
Functions
prop_diff_wald()
: The Wald interval follows the usual textbook definition for a single proportion confidence interval using the normal approximation. It is possible to include a continuity correction for Wald's interval.prop_diff_ha()
: Anderson-Hauck confidence interval.prop_diff_nc()
: Newcombe confidence interval. It is based on the Wilson score confidence interval for a single binomial proportion.prop_diff_cmh()
: Calculates the weighted difference. This is defined as the difference in response rates between the experimental treatment group and the control treatment group, adjusted for stratification factors by applying Cochran-Mantel-Haenszel (CMH) weights. For the CMH chi-squared test, usestats::mantelhaen.test()
.prop_diff_strat_nc()
: Calculates the stratified Newcombe confidence interval and difference in response rates between the experimental treatment group and the control treatment group, adjusted for stratification factors. This implementation follows closely the one proposed by Yan2010-jt;textualtern. Weights can be estimated from the heuristic proposed inprop_strat_wilson()
or from CMH-derived weights (seeprop_diff_cmh()
).
See also
prop_diff()
for implementation of these helper functions.
Examples
# Wald confidence interval
set.seed(2)
rsp <- sample(c(TRUE, FALSE), replace = TRUE, size = 20)
grp <- factor(c(rep("A", 10), rep("B", 10)))
prop_diff_wald(rsp = rsp, grp = grp, conf_level = 0.95, correct = FALSE)
#> $diff
#> [1] 0
#>
#> $diff_ci
#> [1] -0.4382613 0.4382613
#>
# Anderson-Hauck confidence interval
## "Mid" case: 3/4 respond in group A, 1/2 respond in group B.
rsp <- c(TRUE, FALSE, FALSE, TRUE, TRUE, TRUE)
grp <- factor(c("A", "B", "A", "B", "A", "A"), levels = c("B", "A"))
prop_diff_ha(rsp = rsp, grp = grp, conf_level = 0.90)
#> $diff
#> [1] 0.25
#>
#> $diff_ci
#> [1] -0.9195011 1.0000000
#>
## Edge case: Same proportion of response in A and B.
rsp <- c(TRUE, FALSE, TRUE, FALSE)
grp <- factor(c("A", "A", "B", "B"), levels = c("A", "B"))
prop_diff_ha(rsp = rsp, grp = grp, conf_level = 0.6)
#> $diff
#> [1] 0
#>
#> $diff_ci
#> [1] -0.8451161 0.8451161
#>
# Newcombe confidence interval
set.seed(1)
rsp <- c(
sample(c(TRUE, FALSE), size = 40, prob = c(3 / 4, 1 / 4), replace = TRUE),
sample(c(TRUE, FALSE), size = 40, prob = c(1 / 2, 1 / 2), replace = TRUE)
)
grp <- factor(rep(c("A", "B"), each = 40), levels = c("B", "A"))
table(rsp, grp)
#> grp
#> rsp B A
#> FALSE 20 10
#> TRUE 20 30
prop_diff_nc(rsp = rsp, grp = grp, conf_level = 0.9)
#> $diff
#> [1] 0.25
#>
#> $diff_ci
#> [1] 0.07193388 0.40725819
#>
# Cochran-Mantel-Haenszel confidence interval
set.seed(2)
rsp <- sample(c(TRUE, FALSE), 100, TRUE)
grp <- sample(c("Placebo", "Treatment"), 100, TRUE)
grp <- factor(grp, levels = c("Placebo", "Treatment"))
strata_data <- data.frame(
"f1" = sample(c("a", "b"), 100, TRUE),
"f2" = sample(c("x", "y", "z"), 100, TRUE),
stringsAsFactors = TRUE
)
prop_diff_cmh(
rsp = rsp, grp = grp, strata = interaction(strata_data),
conf_level = 0.90
)
#> $prop
#> Placebo Treatment
#> 0.5331117 0.3954251
#>
#> $prop_ci
#> $prop_ci$Placebo
#> [1] 0.4306536 0.6355698
#>
#> $prop_ci$Treatment
#> [1] 0.2890735 0.5017768
#>
#>
#> $diff
#> [1] -0.1376866
#>
#> $diff_ci
#> [1] -0.285363076 0.009989872
#>
#> $weights
#> a.x b.x a.y b.y a.z b.z
#> 0.1148388 0.2131696 0.1148388 0.2131696 0.1767914 0.1671918
#>
#> $n1
#> a.x b.x a.y b.y a.z b.z
#> 4 11 8 11 13 11
#>
#> $n2
#> a.x b.x a.y b.y a.z b.z
#> 8 9 4 9 6 6
#>
# Stratified Newcombe confidence interval
set.seed(2)
data_set <- data.frame(
"rsp" = sample(c(TRUE, FALSE), 100, TRUE),
"f1" = sample(c("a", "b"), 100, TRUE),
"f2" = sample(c("x", "y", "z"), 100, TRUE),
"grp" = sample(c("Placebo", "Treatment"), 100, TRUE),
stringsAsFactors = TRUE
)
prop_diff_strat_nc(
rsp = data_set$rsp, grp = data_set$grp, strata = interaction(data_set[2:3]),
weights_method = "cmh",
conf_level = 0.90
)
#> $diff
#> [1] -0.05777672
#>
#> $diff_ci
#> lower upper
#> -0.2236537 0.1119331
#>
prop_diff_strat_nc(
rsp = data_set$rsp, grp = data_set$grp, strata = interaction(data_set[2:3]),
weights_method = "wilson_h",
conf_level = 0.90
)
#> $diff
#> [1] -0.07771884
#>
#> $diff_ci
#> lower upper
#> -0.2540844 0.1027720
#>