Class to encapsulate filtered datasets
FilteredData.Rd
Class to encapsulate filtered datasets
Class to encapsulate filtered datasets
Details
The main purpose of this class is to provide a collection of reactive datasets, each dataset having a filter state that determines how it is filtered.
For each dataset, get_filter_expr
returns the call to filter the dataset according
to the filter state. The data itself can be obtained through get_data
.
The datasets are filtered lazily, i.e. only when requested / needed in a Shiny app.
By design, any dataname set through set_dataset
cannot be removed because
other code may already depend on it. As a workaround, the underlying
data can be set to NULL
.
The class currently supports variables of the following types within datasets:
choices
: variable of typefactor
, e.g.ADSL$COUNTRY
,iris$Species
zero or more options can be selected, when the variable is a factorlogical
: variable of typelogical
, e.g.ADSL$TRT_FLAG
exactly one option must be selected,TRUE
orFALSE
ranges
: variable of typenumeric
, e.g.ADSL$AGE
,iris$Sepal.Length
numerical range, a range within this range can be selecteddates
: variable of typeDate
,POSIXlt
Other variables cannot be used for filtering the data in this class.
Common arguments are:
filtered
: whether to return a filtered result or notdataname
: the name of one of the datasets in thisFilteredData
varname
: one of the columns in a dataset
Methods
Method new()
Initialize a FilteredData
object
Usage
FilteredData$new(data_objects, join_keys = NULL, code = NULL, check = FALSE)
Arguments
data_objects
-
(
list
) should contain.dataset
data object object supported byFilteredDataset
.metatada
(optional) additional metadata attached to thedataset
.keys
(optional) primary keys.datalabel
(optional) label describing thedataset
.parent
(optional) whichNULL
is a parent of this one.
join_keys
(
JoinKeys
or NULL) seeteal.data::join_keys()
.code
(
CodeClass
orNULL
) seeteal.data::CodeClass
.check
(
logical(1)
) whether data has been check against reproducibility.
Method datanames()
Gets datanames
The datanames are returned in the order in which they must be evaluated (in case of dependencies).
Method set_filterable_varnames()
Set the variable names of a given dataset for the filtering.
Method get_call()
Gets a call
to filter the dataset according to the filter state.
It returns a call
to filter the dataset only, assuming the
other (filtered) datasets it depends on are available.
Together with self$datanames()
which returns the datasets in the correct
evaluation order, this generates the whole filter code, see the function
FilteredData$get_filter_code
.
For the return type, note that rlang::is_expression
returns TRUE
on the
return type, both for base R expressions and calls (single expression,
capturing a function call).
The filtered dataset has the name given by self$filtered_dataname(dataname)
This can be used for the Show R Code
generation.
Method get_code()
Gets the R preprocessing code string that generates the unfiltered datasets.
Method get_filtered_dataset()
Gets FilteredDataset
object which contains all information
pertaining to the specified dataset.
Usage
FilteredData$get_filtered_dataset(dataname = character(0))
Method get_data()
Gets filtered or unfiltered dataset.
For filtered = FALSE
, the original data set with
set_data
is returned including all attributes.
Method get_check()
Returns whether the datasets in the object has undergone a reproducibility check.
Method get_filter_overview()
Get filter overview table in form of X (filtered) / Y (non-filtered).
This is intended to be presented in the application.
The content for each of the data names is defined in get_filter_overview_info
method.
Method get_keys()
Get keys for the dataset.
Method get_varlabels()
Gets labels of variables in the data.
Variables are the column names of the data.
Either, all labels must have been provided for all variables
in set_data
or NULL
.
Method handle_active_datanames()
When active_datanames is "all", sets them to all datanames
,
otherwise, it makes sure that it is a subset of the available datanames
.
Method set_dataset()
Adds a dataset to this FilteredData
.
Method set_code()
Sets the R preprocessing code for single dataset.
Method get_filter_state()
Gets the reactive values from the active FilterState
objects.
Gets all active filters in the form of a nested list.
The output list is a compatible input to self$set_filter_state
.
The attribute formatted
renders the output of self$get_formatted_filter_state
,
which is a character formatting of the filter state.
Method get_formatted_filter_state()
Returns the filter state formatted for printing to an IO
device.
Examples
utils::data(miniACC, package = "MultiAssayExperiment")
datasets <- teal.slice:::FilteredData$new(
list(iris = list(dataset = iris),
mae = list(dataset = miniACC)
),
join_keys = NULL
)
fs <- list(
iris = list(
Sepal.Length = list(selected = c(5.1, 6.4), keep_na = TRUE, keep_inf = FALSE),
Species = list(selected = c("setosa", "versicolor"), keep_na = FALSE)
),
mae = list(
subjects = list(
years_to_birth = list(selected = c(30, 50), keep_na = TRUE, keep_inf = FALSE),
vital_status = list(selected = "1", keep_na = FALSE),
gender = list(selected = "female", keep_na = TRUE)
),
RPPAArray = list(
subset = list(ARRAY_TYPE = list(selected = "", keep_na = TRUE))
)
)
)
isolate(datasets$set_filter_state(state = fs))
cat(shiny::isolate(datasets$get_formatted_filter_state()))
Method set_filter_state()
Sets active filter states.
Examples
utils::data(miniACC, package = "MultiAssayExperiment")
datasets <- teal.slice:::FilteredData$new(
list(iris = list(dataset = iris),
mae = list(dataset = miniACC)
),
join_keys = NULL
)
fs <- list(
iris = list(
Sepal.Length = list(selected = c(5.1, 6.4), keep_na = TRUE, keep_inf = FALSE),
Species = list(selected = c("setosa", "versicolor"), keep_na = FALSE)
),
mae = list(
subjects = list(
years_to_birth = list(selected = c(30, 50), keep_na = TRUE, keep_inf = FALSE),
vital_status = list(selected = "1", keep_na = FALSE),
gender = list(selected = "female", keep_na = TRUE)
),
RPPAArray = list(
subset = list(ARRAY_TYPE = list(selected = "", keep_na = TRUE))
)
)
)
shiny::isolate(datasets$set_filter_state(state = fs))
shiny::isolate(datasets$get_filter_state())
Method remove_filter_state()
Removes one or more FilterState
of a FilteredDataset
in a FilteredData
object.
Method remove_all_filter_states()
Remove all FilterStates
of a FilteredDataset
or all FilterStates
of a FilteredData
object.
Method restore_state_from_bookmark()
Sets this object from a bookmarked state.
Only sets the filter state, does not set the data
and the preprocessing code. The data should already have been set.
Also checks the preprocessing code is identical if provided in the state
.
Since this function is used from the end-user part, its error messages are more verbose. We don't call the Shiny modals from here because this class may be used outside of a Shiny app.
Method filter_panel_disable()
Disable the filter panel by adding disable
class to filter_add_vars
and filter_panel_active_vars
tags in the User Interface.
In addition, it will store the existing filter states in a private field called cached_states
before removing all filter states from the object.
Method filter_panel_enable()
enable the filter panel
Enable the filter panel by adding enable
class to filter_add_vars
and filter_active_vars
tags in the User Interface.
In addition, it will restore the filter states from a private field called cached_states
.
Method get_filter_panel_ui_id()
Gets the id of the filter panel UI. Module for the right filter panel in the teal app with a filter overview panel and a filter variable panel.
This panel contains info about the number of observations left in the (active) datasets and allows to filter the datasets.
Method srv_filter_panel()
Arguments
id
(
character(1)
)
an ID string that corresponds with the ID used to call the module's UI function.active_datanames
function / reactive
returning datanames that should be shown on the filter panel, must be a subset of thedatanames
argument provided toui_filter_panel
; if the function returnsNULL
(as opposed tocharacter(0)
), the filter panel will be hidden
Method srv_filter_overview()
Arguments
id
(
character(1)
)
an ID string that corresponds with the ID used to call the module's UI function.active_datanames
(
function
,reactive
)
returning datanames that should be shown on the filter panel, must be a subset of thedatanames
argument provided toui_filter_panel
; if the function returnsNULL
(as opposed tocharacter(0)
), the filter panel will be hidden.
Examples
library(shiny)
datasets <- teal.slice:::FilteredData$new(
list(
iris = list(dataset = iris),
mtcars = list(dataset = mtcars, metadata = list(type = "training"))
)
)
# get datanames
datasets$datanames()
#> [1] "iris" "mtcars"
df <- datasets$get_data("iris", filtered = FALSE)
print(df)
#> Sepal.Length Sepal.Width Petal.Length Petal.Width Species
#> 1 5.1 3.5 1.4 0.2 setosa
#> 2 4.9 3.0 1.4 0.2 setosa
#> 3 4.7 3.2 1.3 0.2 setosa
#> 4 4.6 3.1 1.5 0.2 setosa
#> 5 5.0 3.6 1.4 0.2 setosa
#> 6 5.4 3.9 1.7 0.4 setosa
#> 7 4.6 3.4 1.4 0.3 setosa
#> 8 5.0 3.4 1.5 0.2 setosa
#> 9 4.4 2.9 1.4 0.2 setosa
#> 10 4.9 3.1 1.5 0.1 setosa
#> 11 5.4 3.7 1.5 0.2 setosa
#> 12 4.8 3.4 1.6 0.2 setosa
#> 13 4.8 3.0 1.4 0.1 setosa
#> 14 4.3 3.0 1.1 0.1 setosa
#> 15 5.8 4.0 1.2 0.2 setosa
#> 16 5.7 4.4 1.5 0.4 setosa
#> 17 5.4 3.9 1.3 0.4 setosa
#> 18 5.1 3.5 1.4 0.3 setosa
#> 19 5.7 3.8 1.7 0.3 setosa
#> 20 5.1 3.8 1.5 0.3 setosa
#> 21 5.4 3.4 1.7 0.2 setosa
#> 22 5.1 3.7 1.5 0.4 setosa
#> 23 4.6 3.6 1.0 0.2 setosa
#> 24 5.1 3.3 1.7 0.5 setosa
#> 25 4.8 3.4 1.9 0.2 setosa
#> 26 5.0 3.0 1.6 0.2 setosa
#> 27 5.0 3.4 1.6 0.4 setosa
#> 28 5.2 3.5 1.5 0.2 setosa
#> 29 5.2 3.4 1.4 0.2 setosa
#> 30 4.7 3.2 1.6 0.2 setosa
#> 31 4.8 3.1 1.6 0.2 setosa
#> 32 5.4 3.4 1.5 0.4 setosa
#> 33 5.2 4.1 1.5 0.1 setosa
#> 34 5.5 4.2 1.4 0.2 setosa
#> 35 4.9 3.1 1.5 0.2 setosa
#> 36 5.0 3.2 1.2 0.2 setosa
#> 37 5.5 3.5 1.3 0.2 setosa
#> 38 4.9 3.6 1.4 0.1 setosa
#> 39 4.4 3.0 1.3 0.2 setosa
#> 40 5.1 3.4 1.5 0.2 setosa
#> 41 5.0 3.5 1.3 0.3 setosa
#> 42 4.5 2.3 1.3 0.3 setosa
#> 43 4.4 3.2 1.3 0.2 setosa
#> 44 5.0 3.5 1.6 0.6 setosa
#> 45 5.1 3.8 1.9 0.4 setosa
#> 46 4.8 3.0 1.4 0.3 setosa
#> 47 5.1 3.8 1.6 0.2 setosa
#> 48 4.6 3.2 1.4 0.2 setosa
#> 49 5.3 3.7 1.5 0.2 setosa
#> 50 5.0 3.3 1.4 0.2 setosa
#> 51 7.0 3.2 4.7 1.4 versicolor
#> 52 6.4 3.2 4.5 1.5 versicolor
#> 53 6.9 3.1 4.9 1.5 versicolor
#> 54 5.5 2.3 4.0 1.3 versicolor
#> 55 6.5 2.8 4.6 1.5 versicolor
#> 56 5.7 2.8 4.5 1.3 versicolor
#> 57 6.3 3.3 4.7 1.6 versicolor
#> 58 4.9 2.4 3.3 1.0 versicolor
#> 59 6.6 2.9 4.6 1.3 versicolor
#> 60 5.2 2.7 3.9 1.4 versicolor
#> 61 5.0 2.0 3.5 1.0 versicolor
#> 62 5.9 3.0 4.2 1.5 versicolor
#> 63 6.0 2.2 4.0 1.0 versicolor
#> 64 6.1 2.9 4.7 1.4 versicolor
#> 65 5.6 2.9 3.6 1.3 versicolor
#> 66 6.7 3.1 4.4 1.4 versicolor
#> 67 5.6 3.0 4.5 1.5 versicolor
#> 68 5.8 2.7 4.1 1.0 versicolor
#> 69 6.2 2.2 4.5 1.5 versicolor
#> 70 5.6 2.5 3.9 1.1 versicolor
#> 71 5.9 3.2 4.8 1.8 versicolor
#> 72 6.1 2.8 4.0 1.3 versicolor
#> 73 6.3 2.5 4.9 1.5 versicolor
#> 74 6.1 2.8 4.7 1.2 versicolor
#> 75 6.4 2.9 4.3 1.3 versicolor
#> 76 6.6 3.0 4.4 1.4 versicolor
#> 77 6.8 2.8 4.8 1.4 versicolor
#> 78 6.7 3.0 5.0 1.7 versicolor
#> 79 6.0 2.9 4.5 1.5 versicolor
#> 80 5.7 2.6 3.5 1.0 versicolor
#> 81 5.5 2.4 3.8 1.1 versicolor
#> 82 5.5 2.4 3.7 1.0 versicolor
#> 83 5.8 2.7 3.9 1.2 versicolor
#> 84 6.0 2.7 5.1 1.6 versicolor
#> 85 5.4 3.0 4.5 1.5 versicolor
#> 86 6.0 3.4 4.5 1.6 versicolor
#> 87 6.7 3.1 4.7 1.5 versicolor
#> 88 6.3 2.3 4.4 1.3 versicolor
#> 89 5.6 3.0 4.1 1.3 versicolor
#> 90 5.5 2.5 4.0 1.3 versicolor
#> 91 5.5 2.6 4.4 1.2 versicolor
#> 92 6.1 3.0 4.6 1.4 versicolor
#> 93 5.8 2.6 4.0 1.2 versicolor
#> 94 5.0 2.3 3.3 1.0 versicolor
#> 95 5.6 2.7 4.2 1.3 versicolor
#> 96 5.7 3.0 4.2 1.2 versicolor
#> 97 5.7 2.9 4.2 1.3 versicolor
#> 98 6.2 2.9 4.3 1.3 versicolor
#> 99 5.1 2.5 3.0 1.1 versicolor
#> 100 5.7 2.8 4.1 1.3 versicolor
#> 101 6.3 3.3 6.0 2.5 virginica
#> 102 5.8 2.7 5.1 1.9 virginica
#> 103 7.1 3.0 5.9 2.1 virginica
#> 104 6.3 2.9 5.6 1.8 virginica
#> 105 6.5 3.0 5.8 2.2 virginica
#> 106 7.6 3.0 6.6 2.1 virginica
#> 107 4.9 2.5 4.5 1.7 virginica
#> 108 7.3 2.9 6.3 1.8 virginica
#> 109 6.7 2.5 5.8 1.8 virginica
#> 110 7.2 3.6 6.1 2.5 virginica
#> 111 6.5 3.2 5.1 2.0 virginica
#> 112 6.4 2.7 5.3 1.9 virginica
#> 113 6.8 3.0 5.5 2.1 virginica
#> 114 5.7 2.5 5.0 2.0 virginica
#> 115 5.8 2.8 5.1 2.4 virginica
#> 116 6.4 3.2 5.3 2.3 virginica
#> 117 6.5 3.0 5.5 1.8 virginica
#> 118 7.7 3.8 6.7 2.2 virginica
#> 119 7.7 2.6 6.9 2.3 virginica
#> 120 6.0 2.2 5.0 1.5 virginica
#> 121 6.9 3.2 5.7 2.3 virginica
#> 122 5.6 2.8 4.9 2.0 virginica
#> 123 7.7 2.8 6.7 2.0 virginica
#> 124 6.3 2.7 4.9 1.8 virginica
#> 125 6.7 3.3 5.7 2.1 virginica
#> 126 7.2 3.2 6.0 1.8 virginica
#> 127 6.2 2.8 4.8 1.8 virginica
#> 128 6.1 3.0 4.9 1.8 virginica
#> 129 6.4 2.8 5.6 2.1 virginica
#> 130 7.2 3.0 5.8 1.6 virginica
#> 131 7.4 2.8 6.1 1.9 virginica
#> 132 7.9 3.8 6.4 2.0 virginica
#> 133 6.4 2.8 5.6 2.2 virginica
#> 134 6.3 2.8 5.1 1.5 virginica
#> 135 6.1 2.6 5.6 1.4 virginica
#> 136 7.7 3.0 6.1 2.3 virginica
#> 137 6.3 3.4 5.6 2.4 virginica
#> 138 6.4 3.1 5.5 1.8 virginica
#> 139 6.0 3.0 4.8 1.8 virginica
#> 140 6.9 3.1 5.4 2.1 virginica
#> 141 6.7 3.1 5.6 2.4 virginica
#> 142 6.9 3.1 5.1 2.3 virginica
#> 143 5.8 2.7 5.1 1.9 virginica
#> 144 6.8 3.2 5.9 2.3 virginica
#> 145 6.7 3.3 5.7 2.5 virginica
#> 146 6.7 3.0 5.2 2.3 virginica
#> 147 6.3 2.5 5.0 1.9 virginica
#> 148 6.5 3.0 5.2 2.0 virginica
#> 149 6.2 3.4 5.4 2.3 virginica
#> 150 5.9 3.0 5.1 1.8 virginica
datasets$get_metadata("mtcars")
#> $type
#> [1] "training"
#>
isolate(
datasets$set_filter_state(
list(iris = list(Species = list(selected = "virginica")))
)
)
isolate(datasets$get_call("iris"))
#> $filter
#> iris <- dplyr::filter(iris, Species == "virginica")
#>
isolate(
datasets$set_filter_state(
list(mtcars = list(mpg = list(selected = c(15, 20))))
)
)
isolate(datasets$get_filter_state())
#> $iris
#> $iris$Species
#> $iris$Species$selected
#> [1] "virginica"
#>
#> $iris$Species$keep_na
#> [1] FALSE
#>
#>
#>
#> $mtcars
#> $mtcars$mpg
#> $mtcars$mpg$selected
#> [1] 15 20
#>
#> $mtcars$mpg$keep_na
#> [1] FALSE
#>
#> $mtcars$mpg$keep_inf
#> [1] FALSE
#>
#>
#>
#> attr(,"formatted")
#> [1] "Filters for dataset: iris\n Filtering on: Species\n Selected values: virginica\n Include missing values: FALSE\nFilters for dataset: mtcars\n Filtering on: mpg\n Selected range: 15.000 - 20.000\n Include missing values: FALSE"
isolate(datasets$get_filter_overview("iris"))
#> Obs Subjects
#> iris "50/150" ""
isolate(datasets$get_filter_overview("mtcars"))
#> Obs Subjects
#> mtcars "13/32" ""
isolate(datasets$get_call("iris"))
#> $filter
#> iris <- dplyr::filter(iris, Species == "virginica")
#>
isolate(datasets$get_call("mtcars"))
#> $filter
#> mtcars <- dplyr::filter(mtcars, mpg >= 15 & mpg <= 20)
#>
## ------------------------------------------------
## Method `FilteredData$get_formatted_filter_state`
## ------------------------------------------------
utils::data(miniACC, package = "MultiAssayExperiment")
datasets <- teal.slice:::FilteredData$new(
list(iris = list(dataset = iris),
mae = list(dataset = miniACC)
),
join_keys = NULL
)
#> Loading required package: MultiAssayExperiment
#> Loading required package: SummarizedExperiment
#> Loading required package: MatrixGenerics
#> Loading required package: matrixStats
#>
#> Attaching package: ‘MatrixGenerics’
#> The following objects are masked from ‘package:matrixStats’:
#>
#> colAlls, colAnyNAs, colAnys, colAvgsPerRowSet, colCollapse,
#> colCounts, colCummaxs, colCummins, colCumprods, colCumsums,
#> colDiffs, colIQRDiffs, colIQRs, colLogSumExps, colMadDiffs,
#> colMads, colMaxs, colMeans2, colMedians, colMins, colOrderStats,
#> colProds, colQuantiles, colRanges, colRanks, colSdDiffs, colSds,
#> colSums2, colTabulates, colVarDiffs, colVars, colWeightedMads,
#> colWeightedMeans, colWeightedMedians, colWeightedSds,
#> colWeightedVars, rowAlls, rowAnyNAs, rowAnys, rowAvgsPerColSet,
#> rowCollapse, rowCounts, rowCummaxs, rowCummins, rowCumprods,
#> rowCumsums, rowDiffs, rowIQRDiffs, rowIQRs, rowLogSumExps,
#> rowMadDiffs, rowMads, rowMaxs, rowMeans2, rowMedians, rowMins,
#> rowOrderStats, rowProds, rowQuantiles, rowRanges, rowRanks,
#> rowSdDiffs, rowSds, rowSums2, rowTabulates, rowVarDiffs, rowVars,
#> rowWeightedMads, rowWeightedMeans, rowWeightedMedians,
#> rowWeightedSds, rowWeightedVars
#> Loading required package: GenomicRanges
#> Loading required package: stats4
#> Loading required package: BiocGenerics
#>
#> Attaching package: ‘BiocGenerics’
#> The following objects are masked from ‘package:stats’:
#>
#> IQR, mad, sd, var, xtabs
#> The following objects are masked from ‘package:base’:
#>
#> Filter, Find, Map, Position, Reduce, anyDuplicated, aperm, append,
#> as.data.frame, basename, cbind, colnames, dirname, do.call,
#> duplicated, eval, evalq, get, grep, grepl, intersect, is.unsorted,
#> lapply, mapply, match, mget, order, paste, pmax, pmax.int, pmin,
#> pmin.int, rank, rbind, rownames, sapply, setdiff, sort, table,
#> tapply, union, unique, unsplit, which.max, which.min
#> Loading required package: S4Vectors
#>
#> Attaching package: ‘S4Vectors’
#> The following objects are masked from ‘package:base’:
#>
#> I, expand.grid, unname
#> Loading required package: IRanges
#> Loading required package: GenomeInfoDb
#> Loading required package: Biobase
#> Welcome to Bioconductor
#>
#> Vignettes contain introductory material; view with
#> 'browseVignettes()'. To cite Bioconductor, see
#> 'citation("Biobase")', and for packages 'citation("pkgname")'.
#>
#> Attaching package: ‘Biobase’
#> The following object is masked from ‘package:MatrixGenerics’:
#>
#> rowMedians
#> The following objects are masked from ‘package:matrixStats’:
#>
#> anyMissing, rowMedians
fs <- list(
iris = list(
Sepal.Length = list(selected = c(5.1, 6.4), keep_na = TRUE, keep_inf = FALSE),
Species = list(selected = c("setosa", "versicolor"), keep_na = FALSE)
),
mae = list(
subjects = list(
years_to_birth = list(selected = c(30, 50), keep_na = TRUE, keep_inf = FALSE),
vital_status = list(selected = "1", keep_na = FALSE),
gender = list(selected = "female", keep_na = TRUE)
),
RPPAArray = list(
subset = list(ARRAY_TYPE = list(selected = "", keep_na = TRUE))
)
)
)
isolate(datasets$set_filter_state(state = fs))
cat(shiny::isolate(datasets$get_formatted_filter_state()))
#> Filters for dataset: iris
#> Filtering on: Sepal.Length
#> Selected range: 5.100 - 6.400
#> Include missing values: TRUE
#> Filtering on: Species
#> Selected values: setosa, versicolor
#> Include missing values: FALSE
#> Filters for dataset: mae
#> Subject filters:
#> Filtering on: years_to_birth
#> Selected range: 30.000 - 50.000
#> Include missing values: TRUE
#> Filtering on: vital_status
#> Selected values: 1
#> Include missing values: FALSE
#> Filtering on: gender
#> Selected values: female
#> Include missing values: TRUE
#> NULL
## ------------------------------------------------
## Method `FilteredData$set_filter_state`
## ------------------------------------------------
utils::data(miniACC, package = "MultiAssayExperiment")
datasets <- teal.slice:::FilteredData$new(
list(iris = list(dataset = iris),
mae = list(dataset = miniACC)
),
join_keys = NULL
)
fs <- list(
iris = list(
Sepal.Length = list(selected = c(5.1, 6.4), keep_na = TRUE, keep_inf = FALSE),
Species = list(selected = c("setosa", "versicolor"), keep_na = FALSE)
),
mae = list(
subjects = list(
years_to_birth = list(selected = c(30, 50), keep_na = TRUE, keep_inf = FALSE),
vital_status = list(selected = "1", keep_na = FALSE),
gender = list(selected = "female", keep_na = TRUE)
),
RPPAArray = list(
subset = list(ARRAY_TYPE = list(selected = "", keep_na = TRUE))
)
)
)
shiny::isolate(datasets$set_filter_state(state = fs))
shiny::isolate(datasets$get_filter_state())
#> $iris
#> $iris$Sepal.Length
#> $iris$Sepal.Length$selected
#> [1] 5.1 6.4
#>
#> $iris$Sepal.Length$keep_na
#> [1] TRUE
#>
#> $iris$Sepal.Length$keep_inf
#> [1] FALSE
#>
#>
#> $iris$Species
#> $iris$Species$selected
#> [1] "setosa" "versicolor"
#>
#> $iris$Species$keep_na
#> [1] FALSE
#>
#>
#>
#> $mae
#> $mae$subjects
#> $mae$subjects$years_to_birth
#> $mae$subjects$years_to_birth$selected
#> [1] 30 50
#>
#> $mae$subjects$years_to_birth$keep_na
#> [1] TRUE
#>
#> $mae$subjects$years_to_birth$keep_inf
#> [1] FALSE
#>
#>
#> $mae$subjects$vital_status
#> $mae$subjects$vital_status$selected
#> [1] "1"
#>
#> $mae$subjects$vital_status$keep_na
#> [1] FALSE
#>
#>
#> $mae$subjects$gender
#> $mae$subjects$gender$selected
#> [1] "female"
#>
#> $mae$subjects$gender$keep_na
#> [1] TRUE
#>
#>
#>
#> $mae$RPPAArray
#> $mae$RPPAArray$subset
#> $mae$RPPAArray$subset$ARRAY_TYPE
#> $mae$RPPAArray$subset$ARRAY_TYPE$selected
#> [1] ""
#>
#> $mae$RPPAArray$subset$ARRAY_TYPE$keep_na
#> [1] TRUE
#>
#>
#>
#>
#>
#> attr(,"formatted")
#> [1] "Filters for dataset: iris\n Filtering on: Sepal.Length\n Selected range: 5.100 - 6.400\n Include missing values: TRUE\n Filtering on: Species\n Selected values: setosa, versicolor\n Include missing values: FALSE\nFilters for dataset: mae\n Subject filters:\n Filtering on: years_to_birth\n Selected range: 30.000 - 50.000\n Include missing values: TRUE\n Filtering on: vital_status\n Selected values: 1\n Include missing values: FALSE\n Filtering on: gender\n Selected values: female\n Include missing values: TRUE\nNULL"