Arguments
- label
(
character(1)
)
menu item label of the module in the teal app.- sl_dataname
(
character
) subject level dataset name, needs to be available in the list passed to thedata
argument ofteal::init()
- ex_dataname
(
character
) exposures dataset name, needs to be available in the list passed to thedata
argument ofteal::init()
- ae_dataname
(
character
) adverse events dataset name, needs to be available in the list passed to thedata
argument ofteal::init()
- cm_dataname
(
character
) concomitant medications dataset name, needs to be available in the list passed to thedata
argument ofteal::init()
specify toNA
if no concomitant medications data is available- id_var
(
choices_seleced
) unique subject ID variable- visit_var
(
choices_seleced
) analysis visit variable- ongo_var
(
choices_seleced
) study ongoing status variable. This variable is a derived logical variable. Usually it can be derived fromEOSSTT
.- anno_var
(
choices_seleced
) annotation variable- heat_var
(
choices_seleced
) heatmap variable- conmed_var
(
choices_seleced
) concomitant medications variable, specify toNA
if no concomitant medications data is available- fontsize
(
numeric(1)
ornumeric(3)
)
Defines initial possible range of font-size.fontsize
is set forteal.widgets::optionalSliderInputValMinMax()
which controls font-size in the output plot.- plot_height
(
numeric(3)
)
vector to indicate default value, minimum and maximum values.- plot_width
(
numeric(3)
)
vector to indicate default value, minimum and maximum values.
Value
the teal::module()
object.
Examples
data <- teal_data() |>
within({
library(dplyr)
ADSL <- rADSL %>% slice(1:30)
ADEX <- rADEX %>% filter(USUBJID %in% ADSL$USUBJID)
ADAE <- rADAE %>% filter(USUBJID %in% ADSL$USUBJID)
ADCM <- rADCM %>% filter(USUBJID %in% ADSL$USUBJID)
# This preprocess is only to force legacy standard on ADCM
ADCM <- ADCM %>%
select(-starts_with("ATC")) %>%
unique()
# function to derive AVISIT from ADEX
.add_visit <- function(data_need_visit) {
visit_dates <- ADEX %>%
filter(PARAMCD == "DOSE") %>%
distinct(USUBJID, AVISIT, ASTDTM) %>%
group_by(USUBJID) %>%
arrange(ASTDTM) %>%
mutate(next_vis = lead(ASTDTM), is_last = ifelse(is.na(next_vis), TRUE, FALSE)) %>%
rename(this_vis = ASTDTM)
data_visit <- data_need_visit %>%
select(USUBJID, ASTDTM) %>%
left_join(visit_dates, by = "USUBJID") %>%
filter(ASTDTM > this_vis & (ASTDTM < next_vis | is_last == TRUE)) %>%
left_join(data_need_visit) %>%
distinct()
return(data_visit)
}
# derive AVISIT for ADAE and ADCM
ADAE <- .add_visit(ADAE)
ADCM <- .add_visit(ADCM)
# derive ongoing status variable for ADEX
ADEX <- ADEX %>%
filter(PARCAT1 == "INDIVIDUAL") %>%
mutate(ongo_status = (EOSSTT == "ONGOING"))
})
join_keys(data) <- default_cdisc_join_keys[names(data)]
ADCM <- data[["ADCM"]]
app <- init(
data = data,
modules = modules(
tm_g_heat_bygrade(
label = "Heatmap by grade",
sl_dataname = "ADSL",
ex_dataname = "ADEX",
ae_dataname = "ADAE",
cm_dataname = "ADCM",
id_var = choices_selected(
selected = "USUBJID",
choices = c("USUBJID", "SUBJID")
),
visit_var = choices_selected(
selected = "AVISIT",
choices = c("AVISIT")
),
ongo_var = choices_selected(
selected = "ongo_status",
choices = c("ongo_status")
),
anno_var = choices_selected(
selected = c("SEX", "COUNTRY"),
choices = c("SEX", "COUNTRY", "USUBJID")
),
heat_var = choices_selected(
selected = "AETOXGR",
choices = c("AETOXGR")
),
conmed_var = choices_selected(
selected = "CMDECOD",
choices = c("CMDECOD")
),
plot_height = c(600, 200, 2000)
)
)
)
#> Initializing tm_g_heat_bygrade
#> Initializing reporter_previewer_module
if (interactive()) {
shinyApp(app$ui, app$server)
}