Using scatterplot matrix
Dawid Kałędkowski
2022-06-14
using-scatterplot-matrix.Rmd
Teal application to use scatter plot matrix with various datasets types
This vignette will guide you through 4 parts to create a teal application using various types of datasets inside an scatter plot matrix module:
- Load Libraries
- Create data sets
- Create an
app
variable - Run the App
Create data sets
Inside this app 5 datasets will be used
-
ADSL
A wide data set with subject data -
ADSL2
A wide data set with subject data -
ADRS
A long data set with response data for subjects at different time points of the study -
ADTTE
A long data set with time to event data -
ADLB
A long data set with lab measurements for each subject
ADSL <- synthetic_cdisc_data("latest")$adsl # nolint
ADSL2 <- synthetic_cdisc_data("latest")$adsl %>% # nolint
mutate(TRTDUR = round(as.numeric(TRTEDTM - TRTSDTM), 1))
ADRS <- synthetic_cdisc_data("latest")$adrs # nolint
ADTTE <- synthetic_cdisc_data("latest")$adtte # nolint
ADLB <- synthetic_cdisc_data("latest")$adlb %>% # nolint
mutate(CHGC = as.factor(case_when(
CHG < 1 ~ "N",
CHG > 1 ~ "P",
TRUE ~ "-"
)))
Create an app
variable
This is the most important section. We will use the teal::init
function to create an app. The data will be handed over using teal.data::cdisc_data
.
The app itself will be constructed by multiple calls of
tm_g_scatterplotmatrix
using different combinations of data
sets.
app <- init(
data = cdisc_data(
cdisc_dataset("ADSL", ADSL, code = "ADSL <- synthetic_cdisc_data(\"latest\")$adsl"),
cdisc_dataset(
"ADSL2",
ADSL2,
keys = get_cdisc_keys("ADSL"),
code = "ADSL2 <- synthetic_cdisc_data(\"latest\")$adsl %>%
mutate(TRTDUR = round(as.numeric(TRTEDTM - TRTSDTM), 1))"
),
cdisc_dataset("ADRS", ADRS, code = "ADRS <- synthetic_cdisc_data(\"latest\")$adrs"),
cdisc_dataset("ADTTE", ADTTE, code = "ADTTE <- synthetic_cdisc_data(\"latest\")$adtte"),
cdisc_dataset("ADLB", ADLB,
code = "ADLB <- synthetic_cdisc_data(\"latest\")$adlb %>%
mutate(CHGC = as.factor(case_when(
CHG < 1 ~ 'N',
CHG > 1 ~ 'P',
TRUE ~ '-'
)))"
),
check = TRUE
),
modules = modules(
modules(
label = "Scatterplot matrix",
# .. single wide ----
tm_g_scatterplotmatrix(
label = "Single wide dataset",
variables = data_extract_spec(
dataname = "ADSL",
select = select_spec(
label = "Select variables:",
choices = variable_choices(ADSL),
selected = c("AGE", "RACE", "SEX", "BMRKR1", "BMRKR2"),
multiple = TRUE,
fixed = FALSE,
ordered = TRUE
)
)
),
tm_g_scatterplotmatrix(
label = "Multiple wide datasets",
variables = list(
data_extract_spec(
dataname = "ADSL",
select = select_spec(
label = "Select variables:",
choices = variable_choices(ADSL),
selected = c("AGE", "ACTARM", "SEX", "BMRKR1"),
multiple = TRUE,
fixed = FALSE,
ordered = TRUE
)
),
data_extract_spec(
dataname = "ADSL2",
select = select_spec(
label = "Select variables:",
choices = variable_choices(ADSL2),
selected = c("COUNTRY", "ACTARM", "STRATA1"),
multiple = TRUE,
fixed = FALSE,
ordered = TRUE
)
)
)
),
tm_g_scatterplotmatrix(
"One long dataset",
variables = data_extract_spec(
dataname = "ADTTE",
select = select_spec(
choices = variable_choices(ADTTE, c("AVAL", "BMRKR1", "BMRKR2")),
selected = c("AVAL", "BMRKR1", "BMRKR2"),
multiple = TRUE,
fixed = FALSE,
ordered = TRUE,
label = "Select variables:"
)
)
),
tm_g_scatterplotmatrix(
label = "Two long datasets",
variables = list(
data_extract_spec(
dataname = "ADRS",
select = select_spec(
label = "Select variables:",
choices = variable_choices(ADRS),
selected = c("AVAL", "AVALC"),
multiple = TRUE,
fixed = FALSE,
ordered = TRUE,
),
filter = filter_spec(
label = "Select endpoints:",
vars = c("PARAMCD", "AVISIT"),
choices = value_choices(ADRS, c("PARAMCD", "AVISIT"), c("PARAM", "AVISIT")),
selected = "OVRINV - SCREENING",
multiple = FALSE
)
),
data_extract_spec(
dataname = "ADTTE",
select = select_spec(
label = "Select variables:",
choices = variable_choices(ADTTE),
selected = c("AVAL", "CNSR"),
multiple = TRUE,
fixed = FALSE,
ordered = TRUE
),
filter = filter_spec(
label = "Select parameters:",
vars = "PARAMCD",
choices = value_choices(ADTTE, "PARAMCD", "PARAM"),
selected = "OS",
multiple = TRUE
)
)
)
)
)
)
)
Run the app
A simple shiny::shinyApp
call will let you run the app.
Note that app is only displayed when running this code inside an R
session.