This module produces a multi-variable logistic regression table that matches LGRT02.
Usage
tm_t_logistic(
label,
dataname,
parentname = ifelse(inherits(arm_var, "data_extract_spec"),
teal.transform::datanames_input(arm_var), "ADSL"),
arm_var = NULL,
arm_ref_comp = NULL,
paramcd,
cov_var = NULL,
avalc_var = teal.transform::choices_selected(teal.transform::variable_choices(dataname,
"AVALC"), "AVALC", fixed = TRUE),
conf_level = teal.transform::choices_selected(c(0.95, 0.9, 0.8), 0.95, keep_order =
TRUE),
pre_output = NULL,
post_output = NULL,
basic_table_args = teal.widgets::basic_table_args()
)
Arguments
- label
(
character
)
menu item label of the module in the teal app.- dataname
(
character
)
analysis data used in teal module.- parentname
(
character
)
parent analysis data used in teal module, usually this refers toADSL
.- arm_var
(
teal.transform::choices_selected()
orteal.transform::data_extract_spec()
) orNULL
object with all available choices and preselected option for variable names that can be used asarm_var
. It defines the grouping variable(s) in the results table. If there are two elements selected forarm_var
, second variable will be nested under the first variable. arm_var is optional, when being NULL, no arm or treatment variable is included in the logistic model.- arm_ref_comp
optional, (
list
)
If specified it must be a named list with each element corresponding to an arm variable inADSL
and the element must be another list (possibly with delayedteal.transform::variable_choices()
or delayedteal.transform::value_choices()
with the elements namedref
andcomp
that the defined the default reference and comparison arms when the arm variable is changed.- paramcd
(
choices_selected
ordata_extract_spec
)
variable value designating the studied parameter.- cov_var
(
choices_selected
ordata_extract_spec
)
object with all available choices and preselected option for the covariates variables.- avalc_var
(
teal.transform::choices_selected()
orteal.transform::data_extract_spec()
)
object with all available choices and preselected option for the analysis variable (categorical).- conf_level
(
choices_selected
)
object with all available choices and preselected option for the confidence level, each within range of (0, 1).- pre_output
optional, (
shiny.tag
)
with text placed before the output to put the output into context. For example a title.- post_output
optional, (
shiny.tag
)
with text placed after the output to put the output into context. For example theshiny::helpText()
elements are useful.- basic_table_args
-
optional, (
basic_table_args
)
object created byteal.widgets::basic_table_args()
with settings for the module table. The argument is merged with optionteal.basic_table_args
and with default module arguments (hard coded in the module body).For more details, see the vignette:
vignette("custom-basic-table-arguments", package = "teal.widgets")
.
Examples
adsl <- tmc_ex_adsl
adrs <- tmc_ex_adrs %>%
dplyr::filter(PARAMCD %in% c("BESRSPI", "INVET"))
arm_ref_comp <- list(
ACTARMCD = list(
ref = "ARM B",
comp = c("ARM A", "ARM C")
),
ARM = list(
ref = "B: Placebo",
comp = c("A: Drug X", "C: Combination")
)
)
app <- init(
data = cdisc_data(
cdisc_dataset("ADSL", adsl),
cdisc_dataset("ADRS", adrs)
),
modules = modules(
tm_t_logistic(
label = "Logistic Regression",
dataname = "ADRS",
arm_var = choices_selected(
choices = variable_choices(adrs, c("ARM", "ARMCD")),
selected = "ARM"
),
arm_ref_comp = arm_ref_comp,
paramcd = choices_selected(
choices = value_choices(adrs, "PARAMCD", "PARAM"),
selected = "BESRSPI"
),
cov_var = choices_selected(
choices = c("SEX", "AGE", "BMRKR1", "BMRKR2"),
selected = "SEX"
)
)
)
)
#> [INFO] 2023-05-31 23:41:44.8767 pid:3043 token:[] teal.modules.clinical Initializing tm_t_logistic
if (interactive()) {
shinyApp(ui = app$ui, server = app$server)
}