Teal module: Event rates adjusted for patient-years
Source:R/tm_t_events_patyear.R
tm_t_events_patyear.Rd
Teal module: Event rates adjusted for patient-years
Usage
tm_t_events_patyear(
label,
dataname,
parentname = ifelse(inherits(arm_var, "data_extract_spec"),
teal.transform::datanames_input(arm_var), "ADSL"),
arm_var,
events_var,
paramcd,
aval_var = teal.transform::choices_selected(teal.transform::variable_choices(dataname,
"AVAL"), "AVAL", fixed = TRUE),
avalu_var = teal.transform::choices_selected(teal.transform::variable_choices(dataname,
"AVALU"), "AVALU", fixed = TRUE),
add_total = TRUE,
conf_level = teal.transform::choices_selected(c(0.95, 0.9, 0.8), 0.95, keep_order =
TRUE),
drop_arm_levels = TRUE,
pre_output = NULL,
post_output = NULL,
basic_table_args = teal.widgets::basic_table_args()
)
Arguments
- label
(
character
)
menu item label of the module in the teal app.- dataname
(
character
)
analysis data used in teal module.- parentname
(
character
)
parent analysis data used in teal module, usually this refers toADSL
.- arm_var
(
choices_selected
ordata_extract_spec
)
object with all available choices and preselected option for variable names that can be used asarm_var
. It defines the grouping variable(s) in the results table. If there are two elements selected forarm_var
, second variable will be nested under the first variable.- events_var
(
teal.transform::choices_selected()
orteal.transform::data_extract_spec()
)
object with all event counts.- paramcd
(
choices_selected
ordata_extract_spec
)
variable value designating the studied parameter.- aval_var
(
choices_selected
ordata_extract_spec
)
object with all available choices and preselected option for the analysis variable.- avalu_var
(
teal.transform::choices_selected()
orteal.transform::data_extract_spec()
)
object with all available choices and preselected option for the analysis unit variable.- add_total
(
logical
)
whether to include column with total number of patients.- conf_level
(
choices_selected
)
object with all available choices and preselected option for the confidence level, each within range of (0, 1).- drop_arm_levels
(
logical
)
drop the unusedarm_var
levels. WhenTRUE
,arm_var
levels are set to those used in thedataname
dataset. WhenFALSE
,arm_var
levels are set to those used in theparantname
dataset.- pre_output
optional, (
shiny.tag
)
with text placed before the output to put the output into context. For example a title.- post_output
optional, (
shiny.tag
)
with text placed after the output to put the output into context. For example theshiny::helpText()
elements are useful.- basic_table_args
-
optional, (
basic_table_args
)
object created byteal.widgets::basic_table_args()
with settings for the module table. The argument is merged with optionteal.basic_table_args
and with default module arguments (hard coded in the module body).For more details, see the vignette:
vignette("custom-basic-table-arguments", package = "teal.widgets")
.
Examples
adsl <- tmc_ex_adsl
adaette <- tmc_ex_adaette %>%
dplyr::filter(PARAMCD %in% c("AETTE1", "AETTE2", "AETTE3")) %>%
dplyr::mutate(is_event = CNSR == 0) %>%
dplyr::mutate(n_events = as.integer(is_event))
app <- init(
data = cdisc_data(
cdisc_dataset("ADSL", adsl),
cdisc_dataset("ADAETTE", adaette)
),
modules = modules(
tm_t_events_patyear(
label = "AE Rate Adjusted for Patient-Years At Risk Table",
dataname = "ADAETTE",
arm_var = choices_selected(
choices = variable_choices(adsl, c("ARM", "ARMCD")),
selected = "ARMCD"
),
add_total = TRUE,
events_var = choices_selected(
choices = variable_choices(adaette, "n_events"),
selected = "n_events",
fixed = TRUE
),
paramcd = choices_selected(
choices = value_choices(adaette, "PARAMCD", "PARAM"),
selected = "AETTE1"
)
)
)
)
#> [INFO] 2023-05-31 23:41:42.5067 pid:3043 token:[] teal.modules.clinical Initializing tm_t_events_patyear
if (interactive()) {
shinyApp(app$ui, app$server)
}