teal Module: Event Rates Adjusted for Patient-Years
Source:R/tm_t_events_patyear.R
tm_t_events_patyear.Rd
This module produces a table of event rates adjusted for patient-years.
Usage
tm_t_events_patyear(
label,
dataname,
parentname = ifelse(inherits(arm_var, "data_extract_spec"),
teal.transform::datanames_input(arm_var), "ADSL"),
arm_var,
events_var,
paramcd,
aval_var = teal.transform::choices_selected(teal.transform::variable_choices(dataname,
"AVAL"), "AVAL", fixed = TRUE),
avalu_var = teal.transform::choices_selected(teal.transform::variable_choices(dataname,
"AVALU"), "AVALU", fixed = TRUE),
add_total = TRUE,
total_label = default_total_label(),
na_level = default_na_str(),
conf_level = teal.transform::choices_selected(c(0.95, 0.9, 0.8), 0.95, keep_order =
TRUE),
drop_arm_levels = TRUE,
pre_output = NULL,
post_output = NULL,
basic_table_args = teal.widgets::basic_table_args()
)
Arguments
- label
(
character
)
menu item label of the module in the teal app.- dataname
(
character
)
analysis data used in teal module.- parentname
(
character
)
parent analysis data used in teal module, usually this refers toADSL
.- arm_var
(
teal.transform::choices_selected()
)
object with all available choices and preselected option for variable names that can be used asarm_var
. It defines the grouping variable(s) in the results table. If there are two elements selected forarm_var
, second variable will be nested under the first variable.- events_var
(
teal.transform::choices_selected()
)
object with all available choices and preselected option for the variable with all event counts.- paramcd
(
teal.transform::choices_selected()
)
object with all available choices and preselected option for the parameter code variable fromdataname
.- aval_var
(
teal.transform::choices_selected()
)
object with all available choices and pre-selected option for the analysis variable.- avalu_var
(
teal.transform::choices_selected()
)
object with all available choices and preselected option for the analysis unit variable.- add_total
(
logical
)
whether to include column with total number of patients.- total_label
(
string
)
string to display as total column/row label if column/row is enabled (seeadd_total
). Defaults to"All Patients"
. To set a new defaulttotal_label
to apply in all modules, runset_default_total_label("new_default")
.- na_level
(
string
)
used to replace allNA
or empty values in character or factor variables in the data. Defaults to"<Missing>"
. To set a defaultna_level
to apply in all modules, runset_default_na_str("new_default")
.- conf_level
(
teal.transform::choices_selected()
)
object with all available choices and pre-selected option for the confidence level, each within range of (0, 1).- drop_arm_levels
(
logical
)
whether to drop unused levels ofarm_var
. IfTRUE
,arm_var
levels are set to those used in thedataname
dataset. IfFALSE
,arm_var
levels are set to those used in theparentname
dataset. Ifdataname
andparentname
are the same, thendrop_arm_levels
is set toTRUE
and user input for this parameter is ignored.- pre_output
(
shiny.tag
) optional,
with text placed before the output to put the output into context. For example a title.- post_output
(
shiny.tag
) optional,
with text placed after the output to put the output into context. For example theshiny::helpText()
elements are useful.- basic_table_args
(
basic_table_args
) optional
object created byteal.widgets::basic_table_args()
with settings for the module table. The argument is merged with optionteal.basic_table_args
and with default module arguments (hard coded in the module body). For more details, see the vignette:vignette("custom-basic-table-arguments", package = "teal.widgets")
.
See also
The TLG Catalog where additional example apps implementing this module can be found.
Examples
library(dplyr)
data <- teal_data()
data <- within(data, {
ADSL <- tmc_ex_adsl
ADAETTE <- tmc_ex_adaette %>%
filter(PARAMCD %in% c("AETTE1", "AETTE2", "AETTE3")) %>%
mutate(is_event = CNSR == 0) %>%
mutate(n_events = as.integer(is_event))
})
join_keys(data) <- default_cdisc_join_keys[names(data)]
ADSL <- data[["ADSL"]]
ADAETTE <- data[["ADAETTE"]]
# 1. Basic Example
app <- init(
data = data,
modules = modules(
tm_t_events_patyear(
label = "AE Rate Adjusted for Patient-Years At Risk Table",
dataname = "ADAETTE",
arm_var = choices_selected(
choices = variable_choices(ADSL, c("ARM", "ARMCD")),
selected = "ARMCD"
),
add_total = TRUE,
events_var = choices_selected(
choices = variable_choices(ADAETTE, "n_events"),
selected = "n_events",
fixed = TRUE
),
paramcd = choices_selected(
choices = value_choices(ADAETTE, "PARAMCD", "PARAM"),
selected = "AETTE1"
)
)
)
)
#> Initializing tm_t_events_patyear
#> Initializing reporter_previewer_module
if (interactive()) {
shinyApp(app$ui, app$server)
}
# 2. Example with table split on 2 arm_var variables
app <- init(
data = data,
modules = modules(
tm_t_events_patyear(
label = "AE Rate Adjusted for Patient-Years At Risk Table",
dataname = "ADAETTE",
arm_var = choices_selected(
choices = variable_choices(ADSL, c("ARM", "ARMCD", "SEX")),
selected = c("ARM", "SEX")
),
add_total = TRUE,
events_var = choices_selected(
choices = variable_choices(ADAETTE, "n_events"),
selected = "n_events",
fixed = TRUE
),
paramcd = choices_selected(
choices = value_choices(ADAETTE, "PARAMCD", "PARAM"),
selected = "AETTE1"
)
)
)
)
#> Initializing tm_t_events_patyear
#> Initializing reporter_previewer_module
if (interactive()) {
shinyApp(app$ui, app$server)
}