This module produces a binary outcome response summary table, with the option to match the template for
response table RSPT01 available in the TLG Catalog here.
Usage
tm_t_binary_outcome(
label,
dataname,
parentname = ifelse(test = inherits(arm_var, "data_extract_spec"), yes =
teal.transform::datanames_input(arm_var), no = "ADSL"),
arm_var,
arm_ref_comp = NULL,
paramcd,
strata_var,
aval_var = teal.transform::choices_selected(choices =
teal.transform::variable_choices(dataname, c("AVALC", "SEX")), selected = "AVALC",
fixed = FALSE),
conf_level = teal.transform::choices_selected(c(0.95, 0.9, 0.8), 0.95, keep_order =
TRUE),
default_responses = c("CR", "PR", "Y", "Complete Response (CR)",
"Partial Response (PR)", "M"),
rsp_table = FALSE,
control = list(global = list(method = ifelse(rsp_table, "clopper-pearson", "waldcc"),
conf_level = 0.95), unstrat = list(method_ci = ifelse(rsp_table, "wald", "waldcc"),
method_test = "schouten", odds = TRUE), strat = list(method_ci = "cmh", method_test =
"cmh")),
add_total = FALSE,
total_label = default_total_label(),
na_level = tern::default_na_str(),
denom = c("N_col", "n", "N_row"),
pre_output = NULL,
post_output = NULL,
basic_table_args = teal.widgets::basic_table_args(),
transformators = list(),
decorators = list()
)Arguments
- label
(
character)
menu item label of the module in the teal app.- dataname
(
character)
analysis data used in teal module.- parentname
(
character)
parent analysis data used in teal module, usually this refers toADSL.- arm_var
(
teal.transform::choices_selected())
object with all available choices and preselected option for variable names that can be used asarm_var. It defines the grouping variable in the results table.- arm_ref_comp
(
list) optional,
if specified it must be a named list with each element corresponding to an arm variable inADSLand the element must be another list (possibly with delayedteal.transform::variable_choices()or delayedteal.transform::value_choices()with the elements namedrefandcompthat the defined the default reference and comparison arms when the arm variable is changed.- paramcd
(
teal.transform::choices_selected())
object with all available choices and preselected option for the parameter code variable fromdataname.- strata_var
(
teal.transform::choices_selected())
names of the variables for stratified analysis.- aval_var
(
teal.transform::choices_selected())
object with all available choices and pre-selected option for the analysis variable.- conf_level
(
teal.transform::choices_selected())
object with all available choices and pre-selected option for the confidence level, each within range of (0, 1).- default_responses
(
listorcharacter)
defines the default codes for the response variable in the module per value ofparamcd. A passed vector is transmitted for allparamcdvalues. A passedlistmust be named and contain arrays, each name corresponding to a single value ofparamcd. Each array may contain default response values or named arraysrspof default selected response values andlevelsof default level choices.- rsp_table
(
logical)
whether the initial set-up of the module should matchRSPT01. Defaults toFALSE.- control
-
(named
list)
named list containing 3 named lists as follows:global: a list of settings for overall analysis with 2 named elementsmethodandconf_level.unstrat: a list of settings for unstratified analysis with 3 named elementsmethod_ciandmethod_test, andodds. Seetern::estimate_proportion_diff(),tern::test_proportion_diff(), andtern::estimate_odds_ratio(), respectively, for options and details on how these settings are implemented in the analysis.strat: a list of settings for stratified analysis with elementsmethod_ciandmethod_test. Seetern::estimate_proportion_diff()andtern::test_proportion_diff(), respectively, for options and details on how these settings are implemented in the analysis.
- add_total
(
logical)
whether to include column with total number of patients.- total_label
(
string)
string to display as total column/row label if column/row is enabled (seeadd_total). Defaults to"All Patients". To set a new defaulttotal_labelto apply in all modules, runset_default_total_label("new_default").- na_level
(
string)
used to replace allNAor empty values in character or factor variables in the data. Defaults to"<Missing>". To set a defaultna_levelto apply in all modules, runset_default_na_str("new_default").- denom
-
(
string)
choice of denominator for proportion. Options are:N_col: total number of patients in this column across rows.n: number of patients with any occurrences.N_row: total number of patients in this row across columns.
- pre_output
(
shiny.tag) optional,
with text placed before the output to put the output into context. For example a title.- post_output
(
shiny.tag) optional,
with text placed after the output to put the output into context. For example theshiny::helpText()elements are useful.- basic_table_args
(
basic_table_args) optional
object created byteal.widgets::basic_table_args()with settings for the module table. The argument is merged with optionteal.basic_table_argsand with default module arguments (hard coded in the module body). For more details, see the vignette:vignette("custom-basic-table-arguments", package = "teal.widgets").- transformators
(
listofteal_transform_module) that will be applied to transform module's data input. To learn more checkvignette("transform-input-data", package = "teal").- decorators
-
(named
listof lists ofteal_transform_module) optional, decorator for tables or plots included in the module output reported. The decorators are applied to the respective output objects.See section "Decorating Module" below for more details.
Details
The display order of response categories inherits the factor level order of the source data. Use
base::factor()and itslevelsargument to manipulate the source data in order to include/exclude or re-categorize response categories and arrange the display order. If response categories are"Missing","Not Evaluable (NE)", or"Missing or unevaluable", 95% confidence interval will not be calculated.Reference arms are automatically combined if multiple arms selected as reference group.
Decorating Module
This module generates the following objects, which can be modified in place using decorators:
table(TableTree- output ofrtables::build_table())
A Decorator is applied to the specific output using a named list of teal_transform_module objects.
The name of this list corresponds to the name of the output to which the decorator is applied.
See code snippet below:
tm_t_binary_outcome(
..., # arguments for module
decorators = list(
table = teal_transform_module(...) # applied only to `table` output
)
)
For additional details and examples of decorators, refer to the vignette
vignette("decorate-module-output", package = "teal.modules.clinical").
To learn more please refer to the vignette
vignette("transform-module-output", package = "teal") or the teal::teal_transform_module() documentation.
See also
The TLG Catalog where additional example apps implementing this module can be found.
Examples
data <- teal_data()
data <- within(data, {
library(dplyr)
library(formatters)
ADSL <- tmc_ex_adsl
ADRS <- tmc_ex_adrs %>%
mutate(
AVALC = d_onco_rsp_label(AVALC) %>%
with_label("Character Result/Finding")
) %>%
filter(PARAMCD != "OVRINV" | AVISIT == "FOLLOW UP")
})
join_keys(data) <- default_cdisc_join_keys[names(data)]
ADSL <- data[["ADSL"]]
ADRS <- data[["ADRS"]]
arm_ref_comp <- list(
ARMCD = list(ref = "ARM B", comp = c("ARM A", "ARM C")),
ARM = list(ref = "B: Placebo", comp = c("A: Drug X", "C: Combination"))
)
app <- init(
data = data,
modules = modules(
tm_t_binary_outcome(
label = "Responders",
dataname = "ADRS",
paramcd = choices_selected(
choices = value_choices(ADRS, "PARAMCD", "PARAM"),
selected = "BESRSPI"
),
arm_var = choices_selected(
choices = variable_choices(ADRS, c("ARM", "ARMCD", "ACTARMCD")),
selected = "ARM"
),
arm_ref_comp = arm_ref_comp,
strata_var = choices_selected(
choices = variable_choices(ADRS, c("SEX", "BMRKR2", "RACE")),
selected = "RACE"
),
default_responses = list(
BESRSPI = list(
rsp = c("Complete Response (CR)", "Partial Response (PR)"),
levels = c(
"Complete Response (CR)", "Partial Response (PR)",
"Stable Disease (SD)", "Progressive Disease (PD)"
)
),
INVET = list(
rsp = c("Stable Disease (SD)", "Not Evaluable (NE)"),
levels = c(
"Complete Response (CR)", "Not Evaluable (NE)", "Partial Response (PR)",
"Progressive Disease (PD)", "Stable Disease (SD)"
)
),
OVRINV = list(
rsp = c("Progressive Disease (PD)", "Stable Disease (SD)"),
levels = c("Progressive Disease (PD)", "Stable Disease (SD)", "Not Evaluable (NE)")
)
),
denom = "N_col"
)
)
)
#> Initializing tm_t_binary_outcome
if (interactive()) {
shinyApp(app$ui, app$server)
}