This module produces a binary outcome response summary table, with the option to match the template for
response table RSPT01
available in the TLG Catalog here.
Usage
tm_t_binary_outcome(
label,
dataname,
parentname = ifelse(test = inherits(arm_var, "data_extract_spec"), yes =
teal.transform::datanames_input(arm_var), no = "ADSL"),
arm_var,
arm_ref_comp = NULL,
paramcd,
strata_var,
aval_var = teal.transform::choices_selected(choices =
teal.transform::variable_choices(dataname, c("AVALC", "SEX")), selected = "AVALC",
fixed = FALSE),
conf_level = teal.transform::choices_selected(c(0.95, 0.9, 0.8), 0.95, keep_order =
TRUE),
default_responses = c("CR", "PR", "Y", "Complete Response (CR)",
"Partial Response (PR)", "M"),
rsp_table = FALSE,
control = list(global = list(method = ifelse(rsp_table, "clopper-pearson", "waldcc"),
conf_level = 0.95), unstrat = list(method_ci = ifelse(rsp_table, "wald", "waldcc"),
method_test = "schouten", odds = TRUE), strat = list(method_ci = "cmh", method_test =
"cmh")),
add_total = FALSE,
total_label = default_total_label(),
na_level = default_na_str(),
pre_output = NULL,
post_output = NULL,
basic_table_args = teal.widgets::basic_table_args(),
decorators = NULL
)
Arguments
- label
(
character
)
menu item label of the module in the teal app.- dataname
(
character
)
analysis data used in teal module.- parentname
(
character
)
parent analysis data used in teal module, usually this refers toADSL
.- arm_var
(
teal.transform::choices_selected()
)
object with all available choices and preselected option for variable names that can be used asarm_var
. It defines the grouping variable in the results table.- arm_ref_comp
(
list
) optional,
if specified it must be a named list with each element corresponding to an arm variable inADSL
and the element must be another list (possibly with delayedteal.transform::variable_choices()
or delayedteal.transform::value_choices()
with the elements namedref
andcomp
that the defined the default reference and comparison arms when the arm variable is changed.- paramcd
(
teal.transform::choices_selected()
)
object with all available choices and preselected option for the parameter code variable fromdataname
.- strata_var
(
teal.transform::choices_selected()
)
names of the variables for stratified analysis.- aval_var
(
teal.transform::choices_selected()
)
object with all available choices and pre-selected option for the analysis variable.- conf_level
(
teal.transform::choices_selected()
)
object with all available choices and pre-selected option for the confidence level, each within range of (0, 1).- default_responses
(
list
orcharacter
)
defines the default codes for the response variable in the module per value ofparamcd
. A passed vector is transmitted for allparamcd
values. A passedlist
must be named and contain arrays, each name corresponding to a single value ofparamcd
. Each array may contain default response values or named arraysrsp
of default selected response values andlevels
of default level choices.- rsp_table
(
logical
)
whether the initial set-up of the module should matchRSPT01
. Defaults toFALSE
.- control
-
(named
list
)
named list containing 3 named lists as follows:global
: a list of settings for overall analysis with 2 named elementsmethod
andconf_level
.unstrat
: a list of settings for unstratified analysis with 3 named elementsmethod_ci
andmethod_test
, andodds
. Seetern::estimate_proportion_diff()
,tern::test_proportion_diff()
, andtern::estimate_odds_ratio()
, respectively, for options and details on how these settings are implemented in the analysis.strat
: a list of settings for stratified analysis with elementsmethod_ci
andmethod_test
. Seetern::estimate_proportion_diff()
andtern::test_proportion_diff()
, respectively, for options and details on how these settings are implemented in the analysis.
- add_total
(
logical
)
whether to include column with total number of patients.- total_label
(
string
)
string to display as total column/row label if column/row is enabled (seeadd_total
). Defaults to"All Patients"
. To set a new defaulttotal_label
to apply in all modules, runset_default_total_label("new_default")
.- na_level
(
string
)
used to replace allNA
or empty values in character or factor variables in the data. Defaults to"<Missing>"
. To set a defaultna_level
to apply in all modules, runset_default_na_str("new_default")
.- pre_output
(
shiny.tag
) optional,
with text placed before the output to put the output into context. For example a title.- post_output
(
shiny.tag
) optional,
with text placed after the output to put the output into context. For example theshiny::helpText()
elements are useful.- basic_table_args
(
basic_table_args
) optional
object created byteal.widgets::basic_table_args()
with settings for the module table. The argument is merged with optionteal.basic_table_args
and with default module arguments (hard coded in the module body). For more details, see the vignette:vignette("custom-basic-table-arguments", package = "teal.widgets")
.- decorators
-
" (
list
ofteal_transform_module
, namedlist
ofteal_transform_module
or"NULL
) optional, if notNULL
, decorator for tables or plots included in the module. When a named list ofteal_transform_module
, the decorators are applied to the respective output objects.Otherwise, the decorators are applied to all objects, which is equivalent as using the name
default
.See section "Decorating Module" below for more details.
Details
The display order of response categories inherits the factor level order of the source data. Use
base::factor()
and itslevels
argument to manipulate the source data in order to include/exclude or re-categorize response categories and arrange the display order. If response categories are"Missing"
,"Not Evaluable (NE)"
, or"Missing or unevaluable"
, 95% confidence interval will not be calculated.Reference arms are automatically combined if multiple arms selected as reference group.
Decorating Module
This module generates the following objects, which can be modified in place using decorators:
table
(TableTree
- output ofrtables::build_table
)
For additional details and examples of decorators, refer to the vignette
vignette("decorate-modules-output", package = "teal")
or the teal_transform_module()
documentation.
See also
The TLG Catalog where additional example apps implementing this module can be found.
Examples
library(dplyr)
data <- teal_data()
data <- within(data, {
ADSL <- tmc_ex_adsl
ADRS <- tmc_ex_adrs %>%
mutate(
AVALC = d_onco_rsp_label(AVALC) %>%
with_label("Character Result/Finding")
) %>%
filter(PARAMCD != "OVRINV" | AVISIT == "FOLLOW UP")
})
join_keys(data) <- default_cdisc_join_keys[names(data)]
ADSL <- data[["ADSL"]]
ADRS <- data[["ADRS"]]
arm_ref_comp <- list(
ARMCD = list(ref = "ARM B", comp = c("ARM A", "ARM C")),
ARM = list(ref = "B: Placebo", comp = c("A: Drug X", "C: Combination"))
)
app <- init(
data = data,
modules = modules(
tm_t_binary_outcome(
label = "Responders",
dataname = "ADRS",
paramcd = choices_selected(
choices = value_choices(ADRS, "PARAMCD", "PARAM"),
selected = "BESRSPI"
),
arm_var = choices_selected(
choices = variable_choices(ADRS, c("ARM", "ARMCD", "ACTARMCD")),
selected = "ARM"
),
arm_ref_comp = arm_ref_comp,
strata_var = choices_selected(
choices = variable_choices(ADRS, c("SEX", "BMRKR2", "RACE")),
selected = "RACE"
),
default_responses = list(
BESRSPI = list(
rsp = c("Complete Response (CR)", "Partial Response (PR)"),
levels = c(
"Complete Response (CR)", "Partial Response (PR)",
"Stable Disease (SD)", "Progressive Disease (PD)"
)
),
INVET = list(
rsp = c("Stable Disease (SD)", "Not Evaluable (NE)"),
levels = c(
"Complete Response (CR)", "Not Evaluable (NE)", "Partial Response (PR)",
"Progressive Disease (PD)", "Stable Disease (SD)"
)
),
OVRINV = list(
rsp = c("Progressive Disease (PD)", "Stable Disease (SD)"),
levels = c("Progressive Disease (PD)", "Stable Disease (SD)", "Not Evaluable (NE)")
)
)
)
)
)
#> Initializing tm_t_binary_outcome
#> Initializing reporter_previewer_module
if (interactive()) {
shinyApp(app$ui, app$server)
}