This module produces a table to summarize abnormality.
Usage
tm_t_abnormality(
label,
dataname,
parentname = ifelse(inherits(arm_var, "data_extract_spec"),
teal.transform::datanames_input(arm_var), "ADSL"),
arm_var,
by_vars,
grade,
abnormal = list(low = c("LOW", "LOW LOW"), high = c("HIGH", "HIGH HIGH")),
id_var = teal.transform::choices_selected(teal.transform::variable_choices(dataname,
subset = "USUBJID"), selected = "USUBJID", fixed = TRUE),
baseline_var =
teal.transform::choices_selected(teal.transform::variable_choices(dataname, subset =
"BNRIND"), selected = "BNRIND", fixed = TRUE),
treatment_flag_var =
teal.transform::choices_selected(teal.transform::variable_choices(dataname, subset =
"ONTRTFL"), selected = "ONTRTFL", fixed = TRUE),
treatment_flag = teal.transform::choices_selected("Y"),
add_total = TRUE,
total_label = default_total_label(),
exclude_base_abn = FALSE,
drop_arm_levels = TRUE,
pre_output = NULL,
post_output = NULL,
na_level = default_na_str(),
basic_table_args = teal.widgets::basic_table_args(),
decorators = NULL
)
Arguments
- label
(
character
)
menu item label of the module in the teal app.- dataname
(
character
)
analysis data used in teal module.- parentname
(
character
)
parent analysis data used in teal module, usually this refers toADSL
.- arm_var
(
teal.transform::choices_selected()
)
object with all available choices and preselected option for variable names that can be used asarm_var
. It defines the grouping variable in the results table.- by_vars
(
teal.transform::choices_selected()
)
object with all available choices and preselected option for variable names used to split the summary by rows.- grade
(
teal.transform::choices_selected()
)
object with all available choices and preselected option for variable names that can be used to specify the abnormality grade. Variable must be factor.- abnormal
(
named list
)
defined by user to indicate what abnormalities are to be displayed.- id_var
(
teal.transform::choices_selected()
)
object specifying the variable name for subject id.- baseline_var
(
teal.transform::choices_selected()
)
variable for baseline abnormality grade.- treatment_flag_var
(
teal.transform::choices_selected()
)
on treatment flag variable.- treatment_flag
(
teal.transform::choices_selected()
)
value indicating on treatment records intreatment_flag_var
.- add_total
(
logical
)
whether to include column with total number of patients.- total_label
(
string
)
string to display as total column/row label if column/row is enabled (seeadd_total
). Defaults to"All Patients"
. To set a new defaulttotal_label
to apply in all modules, runset_default_total_label("new_default")
.- exclude_base_abn
(
logical
)
whether to exclude patients who had abnormal values at baseline.- drop_arm_levels
(
logical
)
whether to drop unused levels ofarm_var
. IfTRUE
,arm_var
levels are set to those used in thedataname
dataset. IfFALSE
,arm_var
levels are set to those used in theparentname
dataset. Ifdataname
andparentname
are the same, thendrop_arm_levels
is set toTRUE
and user input for this parameter is ignored.- pre_output
(
shiny.tag
) optional,
with text placed before the output to put the output into context. For example a title.- post_output
(
shiny.tag
) optional,
with text placed after the output to put the output into context. For example theshiny::helpText()
elements are useful.- na_level
(
character
)
the NA level in the input dataset, default to"<Missing>"
.- basic_table_args
(
basic_table_args
) optional
object created byteal.widgets::basic_table_args()
with settings for the module table. The argument is merged with optionteal.basic_table_args
and with default module arguments (hard coded in the module body). For more details, see the vignette:vignette("custom-basic-table-arguments", package = "teal.widgets")
.- decorators
-
" (
list
ofteal_transform_module
, namedlist
ofteal_transform_module
or"NULL
) optional, if notNULL
, decorator for tables or plots included in the module. When a named list ofteal_transform_module
, the decorators are applied to the respective output objects.Otherwise, the decorators are applied to all objects, which is equivalent as using the name
default
.See section "Decorating Module" below for more details.
Note
Patients with the same abnormality at baseline as on the treatment visit can be
excluded in accordance with GDSR specifications by using exclude_base_abn
.
Decorating Module
This module generates the following objects, which can be modified in place using decorators:
table
(ElementaryTable
- output ofrtables::build_table
)
For additional details and examples of decorators, refer to the vignette
vignette("decorate-modules-output", package = "teal")
or the teal_transform_module()
documentation.
See also
The TLG Catalog where additional example apps implementing this module can be found.
Examples
library(dplyr)
data <- teal_data()
data <- within(data, {
ADSL <- tmc_ex_adsl
ADLB <- tmc_ex_adlb %>%
mutate(
ONTRTFL = case_when(
AVISIT %in% c("SCREENING", "BASELINE") ~ "",
TRUE ~ "Y"
) %>% with_label("On Treatment Record Flag")
)
})
join_keys(data) <- default_cdisc_join_keys[names(data)]
ADSL <- data[["ADSL"]]
ADLB <- data[["ADLB"]]
app <- init(
data = data,
modules = modules(
tm_t_abnormality(
label = "Abnormality Table",
dataname = "ADLB",
arm_var = choices_selected(
choices = variable_choices(ADSL, subset = c("ARM", "ARMCD")),
selected = "ARM"
),
add_total = FALSE,
by_vars = choices_selected(
choices = variable_choices(ADLB, subset = c("LBCAT", "PARAM", "AVISIT")),
selected = c("LBCAT", "PARAM"),
keep_order = TRUE
),
baseline_var = choices_selected(
variable_choices(ADLB, subset = "BNRIND"),
selected = "BNRIND", fixed = TRUE
),
grade = choices_selected(
choices = variable_choices(ADLB, subset = "ANRIND"),
selected = "ANRIND",
fixed = TRUE
),
abnormal = list(low = "LOW", high = "HIGH"),
exclude_base_abn = FALSE
)
)
)
#> Initializing tm_t_abnormality
#> Initializing reporter_previewer_module
if (interactive()) {
shinyApp(app$ui, app$server)
}