Skip to contents

This teal module renders the UI and calls the function that creates a spaghetti plot.

Usage

tm_g_gh_spaghettiplot(
  label,
  dataname,
  param_var,
  param,
  param_var_label = "PARAM",
  idvar,
  xaxis_var,
  yaxis_var,
  xaxis_var_level = NULL,
  filter_var = yaxis_var,
  trt_group,
  trt_group_level = NULL,
  group_stats = "NONE",
  man_color = NULL,
  color_comb = NULL,
  xtick = ggplot2::waiver(),
  xlabel = xtick,
  rotate_xlab = FALSE,
  facet_ncol = 2,
  free_x = FALSE,
  plot_height = c(600, 200, 2000),
  plot_width = NULL,
  font_size = c(12, 8, 20),
  dot_size = c(2, 1, 12),
  hline_arb = numeric(0),
  hline_arb_color = "red",
  hline_arb_label = "Horizontal line",
  hline_vars = character(0),
  hline_vars_colors = "green",
  hline_vars_labels = hline_vars,
  pre_output = NULL,
  post_output = NULL,
  transformators = list()
)

Arguments

label

menu item label of the module in the teal app.

dataname

analysis data passed to the data argument of init. E.g. ADaM structured laboratory data frame ADLB.

param_var

name of variable containing biomarker codes e.g. PARAMCD.

param

biomarker selected.

param_var_label

single name of variable in analysis data that includes parameter labels.

idvar

name of unique subject id variable.

xaxis_var

single name of variable in analysis data that is used as x-axis in the plot for the respective goshawk function.

yaxis_var

single name of variable in analysis data that is used as summary variable in the respective goshawk function.

xaxis_var_level

vector that can be used to define the factor level of xaxis_var. Only use it when xaxis_var is character or factor.

filter_var

data constraint variable.

trt_group

choices_selected object with available choices and pre-selected option for variable names representing treatment group e.g. ARM.

trt_group_level

vector that can be used to define factor level of trt_group.

group_stats

control group mean or median overlay.

man_color

string vector representing customized colors

color_comb

name or hex value for combined treatment color.

xtick

numeric vector to define the tick values of x-axis when x variable is numeric. Default value is waive().

xlabel

vector with same length of xtick to define the label of x-axis tick values. Default value is waive().

rotate_xlab

logical(1) value indicating whether to rotate x-axis labels

facet_ncol

numeric value indicating number of facets per row.

free_x

logical(1) should scales be "fixed" (FALSE) of "free" (TRUE) for x-axis in facet_wrap scales parameter.

plot_height

controls plot height.

plot_width

optional, controls plot width.

font_size

control font size for title, x-axis, y-axis and legend font.

dot_size

plot dot size.

hline_arb

numeric vector of at most 2 values identifying intercepts for arbitrary horizontal lines.

hline_arb_color

a character vector of at most length of hline_arb. naming the color for the arbitrary horizontal lines.

hline_arb_label

a character vector of at most length of hline_arb. naming the label for the arbitrary horizontal lines.

hline_vars

a character vector to name the columns that will define additional horizontal lines.

hline_vars_colors

a character vector naming the colors for the additional horizontal lines.

hline_vars_labels

a character vector naming the labels for the additional horizontal lines that will appear in the legend.

pre_output

(shiny.tag, optional)
with text placed before the output to put the output into context. For example a title.

post_output

(shiny.tag, optional) with text placed after the output to put the output into context. For example the shiny::helpText() elements are useful.

transformators

(list of teal_transform_module) that will be applied to transform module's data input. To learn more check vignette("data-transform-as-shiny-module", package = "teal").

Value

shiny object

Author

Wenyi Liu (luiw2) wenyi.liu@roche.com

Balazs Toth (tothb2) toth.balazs@gene.com

Examples

# Example using ADaM structure analysis dataset.
data <- teal_data()
data <- within(data, {
  library(dplyr)
  library(stringr)

  # use non-exported function from goshawk
  .h_identify_loq_values <- getFromNamespace("h_identify_loq_values", "goshawk")

  # original ARM value = dose value
  .arm_mapping <- list(
    "A: Drug X" = "150mg QD",
    "B: Placebo" = "Placebo",
    "C: Combination" = "Combination"
  )
  set.seed(1)
  ADSL <- rADSL
  ADLB <- rADLB
  .var_labels <- lapply(ADLB, function(x) attributes(x)$label)
  ADLB <- ADLB %>%
    mutate(
      AVISITCD = case_when(
        AVISIT == "SCREENING" ~ "SCR",
        AVISIT == "BASELINE" ~ "BL",
        grepl("WEEK", AVISIT) ~ paste("W", str_extract(AVISIT, "(?<=(WEEK ))[0-9]+")),
        TRUE ~ as.character(NA)
      ),
      AVISITCDN = case_when(
        AVISITCD == "SCR" ~ -2,
        AVISITCD == "BL" ~ 0,
        grepl("W", AVISITCD) ~ as.numeric(gsub("[^0-9]*", "", AVISITCD)),
        TRUE ~ as.numeric(NA)
      ),
      AVISITCD = factor(AVISITCD) %>% reorder(AVISITCDN),
      TRTORD = case_when(
        ARMCD == "ARM C" ~ 1,
        ARMCD == "ARM B" ~ 2,
        ARMCD == "ARM A" ~ 3
      ),
      ARM = as.character(.arm_mapping[match(ARM, names(.arm_mapping))]),
      ARM = factor(ARM) %>% reorder(TRTORD),
      ACTARM = as.character(.arm_mapping[match(ACTARM, names(.arm_mapping))]),
      ACTARM = factor(ACTARM) %>% reorder(TRTORD),
      ANRLO = 30,
      ANRHI = 75
    ) %>%
    rowwise() %>%
    group_by(PARAMCD) %>%
    mutate(LBSTRESC = ifelse(USUBJID %in% sample(USUBJID, 1, replace = TRUE),
      paste("<", round(runif(1, min = 25, max = 30))), LBSTRESC
    )) %>%
    mutate(LBSTRESC = ifelse(USUBJID %in% sample(USUBJID, 1, replace = TRUE),
      paste(">", round(runif(1, min = 70, max = 75))), LBSTRESC
    )) %>%
    ungroup()
  attr(ADLB[["ARM"]], "label") <- .var_labels[["ARM"]]
  attr(ADLB[["ACTARM"]], "label") <- .var_labels[["ACTARM"]]
  attr(ADLB[["ANRLO"]], "label") <- "Analysis Normal Range Lower Limit"
  attr(ADLB[["ANRHI"]], "label") <- "Analysis Normal Range Upper Limit"

  # add LLOQ and ULOQ variables
  ALB_LOQS <- .h_identify_loq_values(ADLB, "LOQFL")
  ADLB <- left_join(ADLB, ALB_LOQS, by = "PARAM")
})

join_keys(data) <- default_cdisc_join_keys[names(data)]

app <- init(
  data = data,
  modules = modules(
    tm_g_gh_spaghettiplot(
      label = "Spaghetti Plot",
      dataname = "ADLB",
      param_var = "PARAMCD",
      param = choices_selected(c("ALT", "CRP", "IGA"), "ALT"),
      idvar = "USUBJID",
      xaxis_var = choices_selected(c("Analysis Visit Code" = "AVISITCD"), "AVISITCD"),
      yaxis_var = choices_selected(c("AVAL", "CHG", "PCHG"), "AVAL"),
      filter_var = choices_selected(
        c("None" = "NONE", "Screening" = "BASE2", "Baseline" = "BASE"),
        "NONE"
      ),
      trt_group = choices_selected(c("ARM", "ACTARM"), "ARM"),
      color_comb = "#39ff14",
      man_color = c(
        "Combination" = "#000000",
        "Placebo" = "#fce300",
        "150mg QD" = "#5a2f5f"
      ),
      hline_arb = c(60, 50),
      hline_arb_color = c("grey", "red"),
      hline_arb_label = c("default A", "default B"),
      hline_vars = c("ANRHI", "ANRLO", "ULOQN", "LLOQN"),
      hline_vars_colors = c("pink", "brown", "purple", "black"),
    )
  )
)
#> Initializing tm_g_gh_spaghettiplot
#> Initializing reporter_previewer_module
if (interactive()) {
  shinyApp(app$ui, app$server)
}