Scatter Plot Teal Module For Biomarker Analysis
Source:R/tm_g_gh_correlationplot.R
tm_g_gh_correlationplot.Rd
Scatter Plot Teal Module For Biomarker Analysis
Usage
tm_g_gh_correlationplot(
label,
dataname,
param_var = "PARAMCD",
xaxis_param = "ALT",
xaxis_var = "BASE",
yaxis_param = "CRP",
yaxis_var = "AVAL",
trt_group,
color_manual = NULL,
shape_manual = NULL,
facet_ncol = 2,
visit_facet = TRUE,
trt_facet = FALSE,
reg_line = FALSE,
loq_legend = TRUE,
rotate_xlab = FALSE,
hline_arb = numeric(0),
hline_arb_color = "red",
hline_arb_label = "Horizontal line",
hline_vars = character(0),
hline_vars_colors = "green",
hline_vars_labels = hline_vars,
vline_arb = numeric(0),
vline_arb_color = "red",
vline_arb_label = "Vertical line",
vline_vars = character(0),
vline_vars_colors = "green",
vline_vars_labels = vline_vars,
plot_height = c(500, 200, 2000),
plot_width = NULL,
font_size = c(12, 8, 20),
dot_size = c(1, 1, 12),
reg_text_size = c(3, 3, 10),
pre_output = NULL,
post_output = NULL
)
Arguments
- label
menu item label of the module in the teal app.
- dataname
analysis data passed to the data argument of
init
. E.g.ADaM
structured laboratory data frameADLB
.- param_var
name of variable containing biomarker codes e.g.
PARAMCD
.- xaxis_param
biomarker selected for
x-axis
.- xaxis_var
name of variable containing biomarker results displayed on x-axis e.g.
BASE
.- yaxis_param
biomarker selected for
y-axis
.- yaxis_var
name of variable containing biomarker results displayed on y-axis e.g.
AVAL
.- trt_group
choices_selected
object with available choices and pre-selected option for variable names representing treatment group e.g.ARM
.- color_manual
vector of colors applied to treatment values.
- shape_manual
vector of symbols applied to
LOQ
values.- facet_ncol
numeric value indicating number of facets per row.
- visit_facet
visit facet toggle.
- trt_facet
facet by treatment group
trt_group
.- reg_line
include regression line and annotations for slope and coefficient in visualization. Use with facet TRUE.
- loq_legend
loq
legend toggle.- rotate_xlab
45 degree rotation of
x-axis
values.- hline_arb
numeric vector of at most 2 values identifying intercepts for arbitrary horizontal lines.
- hline_arb_color
a character vector of at most length of
hline_arb
. naming the color for the arbitrary horizontal lines.- hline_arb_label
a character vector of at most length of
hline_arb
. naming the label for the arbitrary horizontal lines.- hline_vars
a character vector to name the columns that will define additional horizontal lines.
- hline_vars_colors
a character vector naming the colors for the additional horizontal lines.
- hline_vars_labels
a character vector naming the labels for the additional horizontal lines that will appear
- vline_arb
numeric vector of at most 2 values identifying intercepts for arbitrary horizontal lines.
- vline_arb_color
a character vector of at most length of
vline_arb
. naming the color for the arbitrary horizontal lines.- vline_arb_label
a character vector of at most length of
vline_arb
. naming the label for the arbitrary horizontal lines.- vline_vars
a character vector to name the columns that will define additional vertical lines.
- vline_vars_colors
a character vector naming the colors for the additional vertical lines.
- vline_vars_labels
a character vector naming the labels for the additional vertical lines that will appear
- plot_height
controls plot height.
- plot_width
optional, controls plot width.
- font_size
font size control for title,
x-axis
label,y-axis
label and legend.- dot_size
plot dot size.
- reg_text_size
font size control for regression line annotations.
- pre_output
(
shiny.tag
) optional,
with text placed before the output to put the output into context. For example a title.- post_output
(
shiny.tag
) optional, with text placed after the output to put the output into context. For example theshiny::helpText()
elements are useful.
Examples
# Example using ADaM structure analysis dataset.
data <- teal_data()
data <- within(data, {
library(dplyr)
library(stringr)
# use non-exported function from goshawk
.h_identify_loq_values <- getFromNamespace("h_identify_loq_values", "goshawk")
# original ARM value = dose value
.arm_mapping <- list(
"A: Drug X" = "150mg QD",
"B: Placebo" = "Placebo",
"C: Combination" = "Combination"
)
.color_manual <- c("150mg QD" = "#000000", "Placebo" = "#3498DB", "Combination" = "#E74C3C")
# assign LOQ flag symbols: circles for "N" and triangles for "Y", squares for "NA"
.shape_manual <- c("N" = 1, "Y" = 2, "NA" = 0)
set.seed(1)
ADSL <- rADSL
ADLB <- rADLB
.var_labels <- lapply(ADLB, function(x) attributes(x)$label)
ADLB <- ADLB %>%
mutate(AVISITCD = case_when(
AVISIT == "SCREENING" ~ "SCR",
AVISIT == "BASELINE" ~ "BL",
grepl("WEEK", AVISIT) ~
paste(
"W",
trimws(
substr(
AVISIT,
start = 6,
stop = str_locate(AVISIT, "DAY") - 1
)
)
),
TRUE ~ NA_character_
)) %>%
mutate(AVISITCDN = case_when(
AVISITCD == "SCR" ~ -2,
AVISITCD == "BL" ~ 0,
grepl("W", AVISITCD) ~ as.numeric(gsub("[^0-9]*", "", AVISITCD)),
TRUE ~ NA_real_
)) %>%
# use ARMCD values to order treatment in visualization legend
mutate(TRTORD = ifelse(grepl("C", ARMCD), 1,
ifelse(grepl("B", ARMCD), 2,
ifelse(grepl("A", ARMCD), 3, NA)
)
)) %>%
mutate(ARM = as.character(.arm_mapping[match(ARM, names(.arm_mapping))])) %>%
mutate(ARM = factor(ARM) %>%
reorder(TRTORD)) %>%
mutate(
ANRHI = case_when(
PARAMCD == "ALT" ~ 60,
PARAMCD == "CRP" ~ 70,
PARAMCD == "IGA" ~ 80,
TRUE ~ NA_real_
),
ANRLO = case_when(
PARAMCD == "ALT" ~ 20,
PARAMCD == "CRP" ~ 30,
PARAMCD == "IGA" ~ 40,
TRUE ~ NA_real_
)
) %>%
rowwise() %>%
group_by(PARAMCD) %>%
mutate(LBSTRESC = ifelse(
USUBJID %in% sample(USUBJID, 1, replace = TRUE),
paste("<", round(runif(1, min = 25, max = 30))), LBSTRESC
)) %>%
mutate(LBSTRESC = ifelse(
USUBJID %in% sample(USUBJID, 1, replace = TRUE),
paste(">", round(runif(1, min = 70, max = 75))), LBSTRESC
)) %>%
ungroup()
attr(ADLB[["ARM"]], "label") <- .var_labels[["ARM"]]
attr(ADLB[["ANRHI"]], "label") <- "Analysis Normal Range Upper Limit"
attr(ADLB[["ANRLO"]], "label") <- "Analysis Normal Range Lower Limit"
# add LLOQ and ULOQ variables
ADLB_LOQS <- .h_identify_loq_values(ADLB, "LOQFL")
ADLB <- left_join(ADLB, ADLB_LOQS, by = "PARAM")
})
join_keys(data) <- default_cdisc_join_keys[names(data)]
app <- init(
data = data,
modules = modules(
tm_g_gh_correlationplot(
label = "Correlation Plot",
dataname = "ADLB",
param_var = "PARAMCD",
xaxis_param = choices_selected(c("ALT", "CRP", "IGA"), "ALT"),
yaxis_param = choices_selected(c("ALT", "CRP", "IGA"), "CRP"),
xaxis_var = choices_selected(c("AVAL", "BASE", "CHG", "PCHG"), "BASE"),
yaxis_var = choices_selected(c("AVAL", "BASE", "CHG", "PCHG"), "AVAL"),
trt_group = choices_selected(c("ARM", "ACTARM"), "ARM"),
color_manual = c(
"Drug X 100mg" = "#000000",
"Placebo" = "#3498DB",
"Combination 100mg" = "#E74C3C"
),
shape_manual = c("N" = 1, "Y" = 2, "NA" = 0),
plot_height = c(500, 200, 2000),
facet_ncol = 2,
visit_facet = TRUE,
reg_line = FALSE,
loq_legend = TRUE,
font_size = c(12, 8, 20),
dot_size = c(1, 1, 12),
reg_text_size = c(3, 3, 10),
hline_arb = c(40, 50),
hline_arb_label = "arb hori label",
hline_arb_color = c("red", "blue"),
hline_vars = c("ANRHI", "ANRLO", "ULOQN", "LLOQN"),
hline_vars_colors = c("green", "blue", "purple", "cyan"),
hline_vars_labels = c("ANRHI Label", "ANRLO Label", "ULOQN Label", "LLOQN Label"),
vline_vars = c("ANRHI", "ANRLO", "ULOQN", "LLOQN"),
vline_vars_colors = c("yellow", "orange", "brown", "gold"),
vline_vars_labels = c("ANRHI Label", "ANRLO Label", "ULOQN Label", "LLOQN Label"),
vline_arb = c(50, 70),
vline_arb_label = "arb vert A",
vline_arb_color = c("green", "orange")
)
)
)
#> Initializing tm_g_gh_correlationplot
#> Initializing reporter_previewer_module
if (interactive()) {
shinyApp(app$ui, app$server)
}