S3 method to construct an MAETealDataset
object from MultiAssayExperiment
dataset.Rd
Usage
# S3 method for MultiAssayExperiment
dataset(
dataname,
x,
keys = character(0),
label = data_label(x),
code = character(0),
vars = list(),
metadata = NULL
)
dataset(
dataname,
x,
keys = character(0),
label = data_label(x),
code = character(0),
vars = list(),
metadata = NULL
)
# S3 method for data.frame
dataset(
dataname,
x,
keys = character(0),
label = data_label(x),
code = character(0),
vars = list(),
metadata = NULL
)
Arguments
- dataname
(
character
) a given name for the dataset, it cannot contain spaces- x
(
data.frame
orMultiAssayExperiment
) object from which the dataset will be created- keys
optional, (
character
) vector with primary keys- label
(
character
) label to describe the dataset- code
(
character
) a character string defining the code needed to produce the data set inx
- vars
(named
list
) in case when this object code depends on otherTealDataset
object(s) or other constant value, this/these object(s) should be included as named element(s) of the list. For example if this object code needsADSL
object we should specifyvars = list(ADSL = <adsl object>)
. It's recommended to includeTealDataset
orTealDatasetConnector
objects to thevars
list to preserve reproducibility. Please note thatvars
are included to this object as localvars
and they cannot be modified within another dataset.- metadata
(named
list
orNULL
) field containing metadata about the dataset. Each element of the list should be atomic and length one.
Value
TealDataset
object
Examples
# Simple example
utils::data(miniACC, package = "MultiAssayExperiment")
mae_d <- dataset(
"MAE",
miniACC,
keys = c("STUDYID", "USUBJID"),
metadata = list(type = "example")
)
#> Loading required package: MultiAssayExperiment
#> Loading required package: SummarizedExperiment
#> Loading required package: MatrixGenerics
#> Loading required package: matrixStats
#>
#> Attaching package: ‘MatrixGenerics’
#> The following objects are masked from ‘package:matrixStats’:
#>
#> colAlls, colAnyNAs, colAnys, colAvgsPerRowSet, colCollapse,
#> colCounts, colCummaxs, colCummins, colCumprods, colCumsums,
#> colDiffs, colIQRDiffs, colIQRs, colLogSumExps, colMadDiffs,
#> colMads, colMaxs, colMeans2, colMedians, colMins, colOrderStats,
#> colProds, colQuantiles, colRanges, colRanks, colSdDiffs, colSds,
#> colSums2, colTabulates, colVarDiffs, colVars, colWeightedMads,
#> colWeightedMeans, colWeightedMedians, colWeightedSds,
#> colWeightedVars, rowAlls, rowAnyNAs, rowAnys, rowAvgsPerColSet,
#> rowCollapse, rowCounts, rowCummaxs, rowCummins, rowCumprods,
#> rowCumsums, rowDiffs, rowIQRDiffs, rowIQRs, rowLogSumExps,
#> rowMadDiffs, rowMads, rowMaxs, rowMeans2, rowMedians, rowMins,
#> rowOrderStats, rowProds, rowQuantiles, rowRanges, rowRanks,
#> rowSdDiffs, rowSds, rowSums2, rowTabulates, rowVarDiffs, rowVars,
#> rowWeightedMads, rowWeightedMeans, rowWeightedMedians,
#> rowWeightedSds, rowWeightedVars
#> Loading required package: GenomicRanges
#> Loading required package: stats4
#> Loading required package: BiocGenerics
#>
#> Attaching package: ‘BiocGenerics’
#> The following objects are masked from ‘package:stats’:
#>
#> IQR, mad, sd, var, xtabs
#> The following objects are masked from ‘package:base’:
#>
#> Filter, Find, Map, Position, Reduce, anyDuplicated, append,
#> as.data.frame, basename, cbind, colnames, dirname, do.call,
#> duplicated, eval, evalq, get, grep, grepl, intersect, is.unsorted,
#> lapply, mapply, match, mget, order, paste, pmax, pmax.int, pmin,
#> pmin.int, rank, rbind, rownames, sapply, setdiff, sort, table,
#> tapply, union, unique, unsplit, which.max, which.min
#> Loading required package: S4Vectors
#>
#> Attaching package: ‘S4Vectors’
#> The following objects are masked from ‘package:base’:
#>
#> I, expand.grid, unname
#> Loading required package: IRanges
#> Loading required package: GenomeInfoDb
#> Loading required package: Biobase
#> Welcome to Bioconductor
#>
#> Vignettes contain introductory material; view with
#> 'browseVignettes()'. To cite Bioconductor, see
#> 'citation("Biobase")', and for packages 'citation("pkgname")'.
#>
#> Attaching package: ‘Biobase’
#> The following object is masked from ‘package:MatrixGenerics’:
#>
#> rowMedians
#> The following objects are masked from ‘package:matrixStats’:
#>
#> anyMissing, rowMedians
#>
#> Attaching package: ‘MultiAssayExperiment’
#> The following object is masked _by_ ‘.GlobalEnv’:
#>
#> miniACC
mae_d$get_dataname()
#> [1] "MAE"
mae_d$get_dataset_label()
#> character(0)
mae_d$get_metadata()
#> $type
#> [1] "example"
#>
mae_d$get_code()
#> [1] ""
mae_d$get_raw_data()
#> A MultiAssayExperiment object of 5 listed
#> experiments with user-defined names and respective classes.
#> Containing an ExperimentList class object of length 5:
#> [1] RNASeq2GeneNorm: SummarizedExperiment with 198 rows and 79 columns
#> [2] gistict: SummarizedExperiment with 198 rows and 90 columns
#> [3] RPPAArray: SummarizedExperiment with 33 rows and 46 columns
#> [4] Mutations: matrix with 97 rows and 90 columns
#> [5] miRNASeqGene: SummarizedExperiment with 471 rows and 80 columns
#> Functionality:
#> experiments() - obtain the ExperimentList instance
#> colData() - the primary/phenotype DataFrame
#> sampleMap() - the sample coordination DataFrame
#> `$`, `[`, `[[` - extract colData columns, subset, or experiment
#> *Format() - convert into a long or wide DataFrame
#> assays() - convert ExperimentList to a SimpleList of matrices
#> exportClass() - save data to flat files
# Simple example
dataset("iris", iris)
#> A TealDataset object containing the following data.frame (150 rows and 5 columns):
#> Sepal.Length Sepal.Width Petal.Length Petal.Width Species
#> 1 5.1 3.5 1.4 0.2 setosa
#> 2 4.9 3.0 1.4 0.2 setosa
#> 3 4.7 3.2 1.3 0.2 setosa
#> 4 4.6 3.1 1.5 0.2 setosa
#> 5 5.0 3.6 1.4 0.2 setosa
#> 6 5.4 3.9 1.7 0.4 setosa
#>
#> ...
#> Sepal.Length Sepal.Width Petal.Length Petal.Width Species
#> 145 6.7 3.3 5.7 2.5 virginica
#> 146 6.7 3.0 5.2 2.3 virginica
#> 147 6.3 2.5 5.0 1.9 virginica
#> 148 6.5 3.0 5.2 2.0 virginica
#> 149 6.2 3.4 5.4 2.3 virginica
#> 150 5.9 3.0 5.1 1.8 virginica
# Example with more arguments
library(scda)
ADSL <- synthetic_cdisc_data("latest")$adsl
ADSL_dataset <- dataset(dataname = "ADSL", x = ADSL)
ADSL_dataset$get_dataname()
#> [1] "ADSL"
ADSL_dataset <- dataset(
dataname = "ADSL",
x = ADSL,
label = "AdAM subject-level dataset",
code = "ADSL <- synthetic_cdisc_data(\"latest\")$adsl",
metadata = list(type = "synthetic data")
)
ADSL_dataset$get_metadata()
#> $type
#> [1] "synthetic data"
#>
ADSL_dataset$get_dataset_label()
#> [1] "AdAM subject-level dataset"
ADSL_dataset$get_code()
#> [1] "ADSL <- synthetic_cdisc_data(\"latest\")$adsl"