Skip to contents

A longdata object allows for efficient storage and recall of longitudinal datasets for use in bootstrap sampling. The object works by de-constructing the data into lists based upon subject id thus enabling efficient lookup.

Details

The object also handles multiple other operations specific to rbmi such as defining whether an outcome value is MAR / Missing or not as well as tracking which imputation strategy is assigned to each subject.

It is recognised that this objects functionality is fairly overloaded and is hoped that this can be split out into more area specific objects / functions in the future. Further additions of functionality to this object should be avoided if possible.

Public fields

data

The original dataset passed to the constructor (sorted by id and visit)

vars

The vars object (list of key variables) passed to the constructor

visits

A character vector containing the distinct visit levels

ids

A character vector containing the unique ids of each subject in self$data

formula

A formula expressing how the design matrix for the data should be constructed

strata

A numeric vector indicating which strata each corresponding value of self$ids belongs to. If no stratification variable is defined this will default to 1 for all subjects (i.e. same group). This field is only used as part of the self$sample_ids() function to enable stratified bootstrap sampling

ice_visit_index

A list indexed by subject storing the index number of the first visit affected by the ICE. If there is no ICE then it is set equal to the number of visits plus 1.

values

A list indexed by subject storing a numeric vector of the original (unimputed) outcome values

group

A list indexed by subject storing a single character indicating which imputation group the subject belongs to as defined by self$data[id, self$ivars$group] It is used to determine what reference group should be used when imputing the subjects data.

is_mar

A list indexed by subject storing logical values indicating if the subjects outcome values are MAR or not. This list is defaulted to TRUE for all subjects & outcomes and is then modified by calls to self$set_strategies(). Note that this does not indicate which values are missing, this variable is True for outcome values that either occurred before the ICE visit or are post the ICE visit and have an imputation strategy of MAR

strategies

A list indexed by subject storing a single character value indicating the imputation strategy assigned to that subject. This list is defaulted to "MAR" for all subjects and is then modified by calls to either self$set_strategies() or self$update_strategies()

strategy_lock

A list indexed by subject storing a single logical value indicating whether a patients imputation strategy is locked or not. If a strategy is locked it means that it can't change from MAR to non-MAR. Strategies can be changed from non-MAR to MAR though this will trigger a warning. Strategies are locked if the patient is assigned a MAR strategy and has non-missing after their ICE date. This list is populated by a call to self$set_strategies().

indexes

A list indexed by subject storing a numeric vector of indexes which specify which rows in the original dataset belong to this subject i.e. to recover the full data for subject "pt3" you can use self$data[self$indexes[["pt3"]],]. This may seem redundant over filtering the data directly however it enables efficient bootstrap sampling of the data i.e.

indexes <- unlist(self$indexes[c("pt3", "pt3")])
self$data[indexes,]

This list is populated during the object initialisation.

is_missing

A list indexed by subject storing a logical vector indicating whether the corresponding outcome of a subject is missing. This list is populated during the object initialisation.

is_post_ice

A list indexed by subject storing a logical vector indicating whether the corresponding outcome of a subject is post the date of their ICE. If no ICE data has been provided this defaults to False for all observations. This list is populated by a call to self$set_strategies().

Methods


Method get_data()

Returns a data.frame based upon required subject IDs. Replaces missing values with new ones if provided.

Usage

longDataConstructor$get_data(
  obj = NULL,
  nmar.rm = FALSE,
  na.rm = FALSE,
  idmap = FALSE
)

Arguments

obj

Either NULL, a character vector of subjects IDs or a imputation list object. See details.

nmar.rm

Logical value. If TRUE will remove observations that are not regarded as MAR (as determined from self$is_mar).

na.rm

Logical value. If TRUE will remove outcome values that are missing (as determined from self$is_missing).

idmap

Logical value. If TRUE will add an attribute idmap which contains a mapping from the new subject ids to the old subject ids. See details.

Details

If obj is NULL then the full original dataset is returned.

If obj is a character vector then a new dataset consisting of just those subjects is returned; if the character vector contains duplicate entries then that subject will be returned multiple times.

If obj is an imputation_df object (as created by imputation_df()) then the subject ids specified in the object will be returned and missing values will be filled in by those specified in the imputation list object. i.e.

obj <- imputation_df(
  imputation_single( id = "pt1", values = c(1,2,3)),
  imputation_single( id = "pt1", values = c(4,5,6)),
  imputation_single( id = "pt3", values = c(7,8))
)
longdata$get_data(obj)

Will return a data.frame consisting of all observations for pt1 twice and all of the observations for pt3 once. The first set of observations for pt1 will have missing values filled in with c(1,2,3) and the second set will be filled in by c(4,5,6). The length of the values must be equal to sum(self$is_missing[[id]]).

If obj is not NULL then all subject IDs will be scrambled in order to ensure that they are unique i.e. If the pt2 is requested twice then this process guarantees that each set of observations be have a unique subject ID number. The idmap attribute (if requested) can be used to map from the new ids back to the old ids.

Returns

A data.frame.


Method add_subject()

This function decomposes a patient data from self$data and populates all the corresponding lists i.e. self$is_missing, self$values, self$group, etc. This function is only called upon the objects initialization.

Usage

longDataConstructor$add_subject(id)

Arguments

id

Character subject id that exists within self$data.


Method validate_ids()

Throws an error if any element of ids is not within the source data self$data.

Usage

longDataConstructor$validate_ids(ids)

Arguments

ids

A character vector of ids.

Returns

TRUE


Method sample_ids()

Performs random stratified sampling of patient ids (with replacement) Each patient has an equal weight of being picked within their strata (i.e is not dependent on how many non-missing visits they had).

Usage

longDataConstructor$sample_ids()

Returns

Character vector of ids.


Method extract_by_id()

Returns a list of key information for a given subject. Is a convenience wrapper to save having to manually grab each element.

Usage

longDataConstructor$extract_by_id(id)

Arguments

id

Character subject id that exists within self$data.


Method update_strategies()

Convenience function to run self$set_strategies(dat_ice, update=TRUE) kept for legacy reasons.

Usage

longDataConstructor$update_strategies(dat_ice)

Arguments

dat_ice

A data.frame containing ICE information see impute() for the format of this dataframe.


Method set_strategies()

Updates the self$strategies, self$is_mar, self$is_post_ice variables based upon the provided ICE information.

Usage

longDataConstructor$set_strategies(dat_ice = NULL, update = FALSE)

Arguments

dat_ice

a data.frame containing ICE information. See details.

update

Logical, indicates that the ICE data should be used as an update. See details.

Details

See draws() for the specification of dat_ice if update=FALSE. See impute() for the format of dat_ice if update=TRUE. If update=TRUE this function ensures that MAR strategies cannot be changed to non-MAR in the presence of post-ICE observations.


Method check_has_data_at_each_visit()

Ensures that all visits have at least 1 observed "MAR" observation. Throws an error if this criteria is not met. This is to ensure that the initial MMRM can be resolved.

Usage

longDataConstructor$check_has_data_at_each_visit()


Method set_strata()

Populates the self$strata variable. If the user has specified stratification variables The first visit is used to determine the value of those variables. If no stratification variables have been specified then everyone is defined as being in strata 1.

Usage

longDataConstructor$set_strata()


Method new()

Constructor function.

Usage

longDataConstructor$new(data, vars)

Arguments

data

longitudinal dataset.

vars

an ivars object created by set_vars().


Method clone()

The objects of this class are cloneable with this method.

Usage

longDataConstructor$clone(deep = FALSE)

Arguments

deep

Whether to make a deep clone.