RSPT01
template may be used to summarize any binary outcome or response variable at
a single time point. Typical application for oncology
Usage
rspt01_main(
adam_db,
dataset = "adrs",
arm_var = "ARM",
ref_group = NULL,
odds_ratio = TRUE,
perform_analysis = "unstrat",
strata = NULL,
conf_level = 0.95,
methods = list(),
...
)
rspt01_pre(adam_db, ...)
rspt01_post(tlg, prune_0 = TRUE, ...)
rspt01
Arguments
- adam_db
(
list
ofdata.frames
) object containing theADaM
datasets- dataset
(
string
) the name of a table in theadam_db
object.- arm_var
(
string
) variable used for column splitting- ref_group
(
string
) The name of the reference group, the value should be identical to the values inarm_var
, if not specified, it will by default use the first level or value ofarm_var
.- odds_ratio
(
flag
) should the odds ratio be calculated, default isTRUE
- perform_analysis
(
string
) option to display statistical comparisons using stratified analyses, or unstratified analyses, or both, e.g.c("unstrat", "strat")
. Only unstratified will be displayed by default- strata
(
string
) stratification factors, e.g.strata = c("STRATA1", "STRATA2")
, by default as NULL- conf_level
(
numeric
) the level of confidence interval, default is 0.95.- methods
(
list
) a named list, use a named list to control, for example:methods = list(prop_conf_method = "wald", diff_conf_method = "wald", strat_diff_conf_method = "ha", diff_pval_method = "fisher", strat_diff_pval_method = "schouten")
prop_conf_method
controls the methods of calculating proportion confidence interval,diff_conf_method
controls the methods of calculating unstratified difference confidence interval,strat_diff_conf_method
controls the methods of calculating stratified difference confidence interval,diff_pval_method
controls the methods of calculating unstratified p-value for odds ratio,strat_diff_pval_method
controls the methods of calculating stratified p-value for odds ratio, see more details intern
- ...
not used.
- tlg
(
TableTree
,Listing
orggplot
) object typically produced by amain
function.- prune_0
(
flag
) remove 0 count rows
Value
the main function returns an rtables
object.
the preprocessing function returns a list
of data.frame
.
the postprocessing function returns an rtables
object or an ElementaryTable
(null report).
Functions
rspt01_main()
: Main TLG functionrspt01_pre()
: Preprocessingrspt01_post()
: Postprocessing
Examples
library(dplyr)
library(dunlin)
proc_data <- log_filter(syn_data, PARAMCD == "BESRSPI", "adrs")
run(rspt01, proc_data)
#> Warning: Chi-squared approximation may be incorrect
#> A: Drug X B: Placebo C: Combination
#> (N=15) (N=15) (N=15)
#> ————————————————————————————————————————————————————————————————————————————————————————————
#> Responders 15 (100.0%) 14 (93.3%) 15 (100.0%)
#> 95% CI (Wald, with correction) (96.7, 100.0) (77.4, 100.0) (96.7, 100.0)
#> Unstratified Analysis
#> Difference in Response rate (%) -6.7 0.0
#> 95% CI (Wald, with correction) (-26.0, 12.6) (-6.7, 6.7)
#> p-value (Chi-Squared Test) 0.3091 1.0000
#> Odds Ratio (95% CI) 0.00 (0.00 - Inf) 1.00 (0.00 - Inf)
#> Complete Response (CR) 15 (100.0%) 11 (73.3%) 14 (93.3%)
#> 95% CI (Wald, with correction) (96.67, 100.00) (47.62, 99.05) (77.38, 100.00)
#> Partial Response (PR) 0 (0.0%) 3 (20.0%) 1 (6.7%)
#> 95% CI (Wald, with correction) (0.00, 3.33) (0.00, 43.58) (0.00, 22.62)
#> Stable Disease (SD) 0 (0.0%) 1 (6.7%) 0 (0.0%)
#> 95% CI (Wald, with correction) (0.00, 3.33) (0.00, 22.62) (0.00, 3.33)
run(rspt01, proc_data,
odds_ratio = FALSE, perform_analysis = c("unstrat", "strat"),
strata = c("STRATA1", "STRATA2"), methods = list(diff_pval_method = "fisher")
)
#> Warning: Less than 5 observations in some strata.
#> Warning: Less than 5 observations in some strata.
#> Warning: <5 data points in some strata. CMH test may be incorrect.
#> Warning: <5 data points in some strata. CMH test may be incorrect.
#> A: Drug X B: Placebo C: Combination
#> (N=15) (N=15) (N=15)
#> —————————————————————————————————————————————————————————————————————————————————————————————
#> Responders 15 (100.0%) 14 (93.3%) 15 (100.0%)
#> 95% CI (Wald, with correction) (96.7, 100.0) (77.4, 100.0) (96.7, 100.0)
#> Unstratified Analysis
#> Difference in Response rate (%) -6.7 0.0
#> 95% CI (Wald, with correction) (-26.0, 12.6) (-6.7, 6.7)
#> p-value (Fisher's Exact Test) 1.0000 1.0000
#> Stratified Analysis
#> Difference in Response rate (%) -6.8 0.0
#> 95% CI (CMH, without correction) (-18.8, 5.3) (0.0, 0.0)
#> p-value (Cochran-Mantel-Haenszel Test) 0.3613 NE
#> Complete Response (CR) 15 (100.0%) 11 (73.3%) 14 (93.3%)
#> 95% CI (Wald, with correction) (96.67, 100.00) (47.62, 99.05) (77.38, 100.00)
#> Partial Response (PR) 0 (0.0%) 3 (20.0%) 1 (6.7%)
#> 95% CI (Wald, with correction) (0.00, 3.33) (0.00, 43.58) (0.00, 22.62)
#> Stable Disease (SD) 0 (0.0%) 1 (6.7%) 0 (0.0%)
#> 95% CI (Wald, with correction) (0.00, 3.33) (0.00, 22.62) (0.00, 3.33)