Skip to contents

RSPT01 template may be used to summarize any binary outcome or response variable at a single time point. Typical application for oncology

Usage

rspt01_main(
  adam_db,
  dataset = "adrs",
  arm_var = "ARM",
  ref_group = NULL,
  odds_ratio = TRUE,
  perform_analysis = "unstrat",
  strata = NULL,
  conf_level = 0.95,
  methods = list(),
  ...
)

rspt01_pre(adam_db, ...)

rspt01_post(tlg, prune_0 = TRUE, ...)

rspt01

Format

An object of class chevron_t of length 1.

Arguments

adam_db

(list of data.frames) object containing the ADaM datasets

dataset

(string) the name of a table in the adam_db object.

arm_var

(string) variable used for column splitting

ref_group

(string) The name of the reference group, the value should be identical to the values in arm_var, if not specified, it will by default use the first level or value of arm_var.

odds_ratio

(flag) should the odds ratio be calculated, default is TRUE

perform_analysis

(string) option to display statistical comparisons using stratified analyses, or unstratified analyses, or both, e.g. c("unstrat", "strat"). Only unstratified will be displayed by default

strata

(string) stratification factors, e.g. strata = c("STRATA1", "STRATA2"), by default as NULL

conf_level

(numeric) the level of confidence interval, default is 0.95.

methods

(list) a named list, use a named list to control, for example: methods = list(prop_conf_method = "wald", diff_conf_method = "wald", strat_diff_conf_method = "ha", diff_pval_method = "fisher", strat_diff_pval_method = "schouten") prop_conf_method controls the methods of calculating proportion confidence interval, diff_conf_method controls the methods of calculating unstratified difference confidence interval, strat_diff_conf_method controls the methods of calculating stratified difference confidence interval, diff_pval_method controls the methods of calculating unstratified p-value for odds ratio, strat_diff_pval_method controls the methods of calculating stratified p-value for odds ratio, see more details in tern

...

not used.

tlg

(TableTree, Listing or ggplot) object typically produced by a main function.

prune_0

(flag) remove 0 count rows

Value

the main function returns an rtables object.

the preprocessing function returns a list of data.frame.

the postprocessing function returns an rtables object or an ElementaryTable (null report).

Details

  • No overall value.

Functions

  • rspt01_main(): Main TLG function

  • rspt01_pre(): Preprocessing

  • rspt01_post(): Postprocessing

Examples

library(dplyr)
library(dunlin)

proc_data <- log_filter(syn_data, PARAMCD == "BESRSPI", "adrs")

run(rspt01, proc_data)
#> Warning: Chi-squared approximation may be incorrect
#>                                           A: Drug X         B: Placebo        C: Combination  
#>                                            (N=15)             (N=15)              (N=15)      
#>   ————————————————————————————————————————————————————————————————————————————————————————————
#>   Responders                             15 (100.0%)        14 (93.3%)          15 (100.0%)   
#>   95% CI (Wald, with correction)        (96.7, 100.0)      (77.4, 100.0)       (96.7, 100.0)  
#>   Unstratified Analysis                                                                       
#>     Difference in Response rate (%)                            -6.7                 0.0       
#>       95% CI (Wald, with correction)                       (-26.0, 12.6)        (-6.7, 6.7)   
#>     p-value (Chi-Squared Test)                                0.3091              1.0000      
#>   Odds Ratio (95% CI)                                    0.00 (0.00 - Inf)   1.00 (0.00 - Inf)
#>   Complete Response (CR)                 15 (100.0%)        11 (73.3%)          14 (93.3%)    
#>     95% CI (Wald, with correction)     (96.67, 100.00)    (47.62, 99.05)      (77.38, 100.00) 
#>   Partial Response (PR)                   0 (0.0%)           3 (20.0%)           1 (6.7%)     
#>     95% CI (Wald, with correction)      (0.00, 3.33)       (0.00, 43.58)       (0.00, 22.62)  
#>   Stable Disease (SD)                     0 (0.0%)           1 (6.7%)            0 (0.0%)     
#>     95% CI (Wald, with correction)      (0.00, 3.33)       (0.00, 22.62)       (0.00, 3.33)   

run(rspt01, proc_data,
  odds_ratio = FALSE, perform_analysis = c("unstrat", "strat"),
  strata = c("STRATA1", "STRATA2"), methods = list(diff_pval_method = "fisher")
)
#> Warning: Less than 5 observations in some strata.
#> Warning: Less than 5 observations in some strata.
#> Warning: <5 data points in some strata. CMH test may be incorrect.
#> Warning: <5 data points in some strata. CMH test may be incorrect.
#>                                                 A: Drug X        B: Placebo     C: Combination 
#>                                                  (N=15)            (N=15)           (N=15)     
#>   —————————————————————————————————————————————————————————————————————————————————————————————
#>   Responders                                   15 (100.0%)       14 (93.3%)       15 (100.0%)  
#>   95% CI (Wald, with correction)              (96.7, 100.0)    (77.4, 100.0)     (96.7, 100.0) 
#>   Unstratified Analysis                                                                        
#>     Difference in Response rate (%)                                 -6.7              0.0      
#>       95% CI (Wald, with correction)                           (-26.0, 12.6)      (-6.7, 6.7)  
#>     p-value (Fisher's Exact Test)                                  1.0000           1.0000     
#>   Stratified Analysis                                                                          
#>     Difference in Response rate (%)                                 -6.8              0.0      
#>       95% CI (CMH, without correction)                          (-18.8, 5.3)      (0.0, 0.0)   
#>     p-value (Cochran-Mantel-Haenszel Test)                         0.3613             NE       
#>   Complete Response (CR)                       15 (100.0%)       11 (73.3%)       14 (93.3%)   
#>     95% CI (Wald, with correction)           (96.67, 100.00)   (47.62, 99.05)   (77.38, 100.00)
#>   Partial Response (PR)                         0 (0.0%)         3 (20.0%)         1 (6.7%)    
#>     95% CI (Wald, with correction)            (0.00, 3.33)     (0.00, 43.58)     (0.00, 22.62) 
#>   Stable Disease (SD)                           0 (0.0%)          1 (6.7%)         0 (0.0%)    
#>     95% CI (Wald, with correction)            (0.00, 3.33)     (0.00, 22.62)     (0.00, 3.33)