DMT01 Table 1 (Default) Demographics and Baseline Characteristics Table 1.
dmt01.RdFor each variable, summary statistics are
by default based on the number of patients in the corresponding n row.
Usage
dmt01_main(
adam_db,
arm_var = "ARM",
lbl_overall = "All {Patient_label}",
summaryvars = c("AAGE", "AGEGR1", "SEX", "ETHNIC", "RACE"),
stats = list(default = c("n", "mean_sd", "median", "range", "count_fraction")),
precision = list(),
...
)
dmt01_pre(adam_db, ...)
dmt01_post(tlg, prune_0 = TRUE, ...)
dmt01Arguments
- adam_db
(
listofdata.frames) object containing theADaMdatasets- arm_var
(
string) variable used for column splitting- lbl_overall
(
string) label used for overall column, if set toNULLthe overall column is omitted- summaryvars
(
character) variables summarized in demographic table. The label attribute of the corresponding column inadsltable ofadam_dbis used as label.- stats
(named
listof character) where names of columns found in.df_rowand the values indicate the statistical analysis to perform. Ifdefaultis set, and parameter precision not specified, the value fordefaultwill be used.- precision
(named
listofinteger) where names arestringsfound insummaryvarsand the values indicate the number of digits in statistics for numeric variables. Ifdefaultis set, and parameter precision not specified, the value fordefaultwill be used. If neither are provided, auto determination is used. Seetern::format_auto.- ...
not used.
- tlg
(
TableTree,Listingorggplot) object typically produced by amainfunction.- prune_0
(
flag) remove 0 count rows
Details
Information from
ADSUBare generally included intoADSLbefore analysis.Default demographic and characteristics table
If not specified otherwise, numbers represent absolute numbers of patients and fraction of
NRemove zero-count rows
Split columns by arm (planned or actual / code or description)
Include a total column by default
Examples
run(dmt01, syn_data)
#> A: Drug X B: Placebo C: Combination All Patients
#> (N=134) (N=134) (N=132) (N=400)
#> ——————————————————————————————————————————————————————————————————————————————————————————————
#> Age (yr)
#> n 134 134 132 400
#> Mean (SD) 33.8 (6.6) 35.4 (7.9) 35.4 (7.7) 34.9 (7.4)
#> Median 33.0 35.0 35.0 34.0
#> Min - Max 21 - 50 21 - 62 20 - 69 20 - 69
#> Age Group
#> n 134 134 132 400
#> <65 134 (100%) 134 (100%) 131 (99.2%) 399 (99.8%)
#> >=65 0 0 1 (0.8%) 1 (0.2%)
#> Sex
#> n 134 134 132 400
#> Male 55 (41.0%) 52 (38.8%) 62 (47.0%) 169 (42.2%)
#> Female 79 (59.0%) 82 (61.2%) 70 (53.0%) 231 (57.8%)
#> Ethnicity
#> n 134 134 132 400
#> NOT REPORTED 6 (4.5%) 10 (7.5%) 11 (8.3%) 27 (6.8%)
#> HISPANIC OR LATINO 15 (11.2%) 18 (13.4%) 15 (11.4%) 48 (12.0%)
#> NOT HISPANIC OR LATINO 104 (77.6%) 103 (76.9%) 101 (76.5%) 308 (77.0%)
#> UNKNOWN 9 (6.7%) 3 (2.2%) 5 (3.8%) 17 (4.2%)
#> RACE
#> n 134 134 132 400
#> AMERICAN INDIAN OR ALASKA NATIVE 8 (6.0%) 11 (8.2%) 6 (4.5%) 25 (6.2%)
#> ASIAN 68 (50.7%) 68 (50.7%) 73 (55.3%) 209 (52.2%)
#> BLACK OR AFRICAN AMERICAN 31 (23.1%) 28 (20.9%) 32 (24.2%) 91 (22.8%)
#> WHITE 27 (20.1%) 27 (20.1%) 21 (15.9%) 75 (18.8%)