DMT01
Table 1 (Default) Demographics and Baseline Characteristics Table 1.
dmt01.Rd
For each variable, summary statistics are
by default based on the number of patients in the corresponding n
row.
Usage
dmt01_main(
adam_db,
arm_var = "ARM",
lbl_overall = "All {Patient_label}",
summaryvars = c("AAGE", "AGEGR1", "SEX", "ETHNIC", "RACE"),
stats = list(default = c("n", "mean_sd", "median", "range", "count_fraction")),
precision = list(),
...
)
dmt01_pre(adam_db, ...)
dmt01_post(tlg, prune_0 = TRUE, ...)
dmt01
Arguments
- adam_db
(
list
ofdata.frames
) object containing theADaM
datasets- arm_var
(
string
) variable used for column splitting- lbl_overall
(
string
) label used for overall column, if set toNULL
the overall column is omitted- summaryvars
(
character
) variables summarized in demographic table. The label attribute of the corresponding column inadsl
table ofadam_db
is used as label.- stats
(named
list
of character) where names of columns found in.df_row
and the values indicate the statistical analysis to perform. Ifdefault
is set, and parameter precision not specified, the value fordefault
will be used.- precision
(named
list
ofinteger
) where names arestrings
found insummaryvars
and the values indicate the number of digits in statistics for numeric variables. Ifdefault
is set, and parameter precision not specified, the value fordefault
will be used. If neither are provided, auto determination is used. Seetern::format_auto
.- ...
not used.
- tlg
(
TableTree
,Listing
orggplot
) object typically produced by amain
function.- prune_0
(
flag
) remove 0 count rows
Details
Information from
ADSUB
are generally included intoADSL
before analysis.Default demographic and characteristics table
If not specified otherwise, numbers represent absolute numbers of patients and fraction of
N
Remove zero-count rows
Split columns by arm (planned or actual / code or description)
Include a total column by default
Examples
run(dmt01, syn_data)
#> A: Drug X B: Placebo C: Combination All Patients
#> (N=134) (N=134) (N=132) (N=400)
#> ——————————————————————————————————————————————————————————————————————————————————————————————
#> Age (yr)
#> n 134 134 132 400
#> Mean (SD) 33.8 (6.6) 35.4 (7.9) 35.4 (7.7) 34.9 (7.4)
#> Median 33.0 35.0 35.0 34.0
#> Min - Max 21 - 50 21 - 62 20 - 69 20 - 69
#> Age Group
#> n 134 134 132 400
#> <65 134 (100%) 134 (100%) 131 (99.2%) 399 (99.8%)
#> >=65 0 0 1 (0.8%) 1 (0.2%)
#> Sex
#> n 134 134 132 400
#> Male 55 (41.0%) 52 (38.8%) 62 (47.0%) 169 (42.2%)
#> Female 79 (59.0%) 82 (61.2%) 70 (53.0%) 231 (57.8%)
#> Ethnicity
#> n 134 134 132 400
#> NOT REPORTED 6 (4.5%) 10 (7.5%) 11 (8.3%) 27 (6.8%)
#> HISPANIC OR LATINO 15 (11.2%) 18 (13.4%) 15 (11.4%) 48 (12.0%)
#> NOT HISPANIC OR LATINO 104 (77.6%) 103 (76.9%) 101 (76.5%) 308 (77.0%)
#> UNKNOWN 9 (6.7%) 3 (2.2%) 5 (3.8%) 17 (4.2%)
#> RACE
#> n 134 134 132 400
#> AMERICAN INDIAN OR ALASKA NATIVE 8 (6.0%) 11 (8.2%) 6 (4.5%) 25 (6.2%)
#> ASIAN 68 (50.7%) 68 (50.7%) 73 (55.3%) 209 (52.2%)
#> BLACK OR AFRICAN AMERICAN 31 (23.1%) 28 (20.9%) 32 (24.2%) 91 (22.8%)
#> WHITE 27 (20.1%) 27 (20.1%) 21 (15.9%) 75 (18.8%)