Skip to contents

The EGT05_QTCAT table summarizes several electrocardiogram parameters and their evolution throughout the study.

Usage

egt05_qtcat_main(
  adam_db,
  arm_var = "ACTARM",
  summaryvars = c("AVALCAT1", "CHGCAT1"),
  lbl_overall = NULL,
  row_split_var = NULL,
  page_var = NULL,
  visitvar = "AVISIT",
  ...
)

egt05_qtcat_pre(adam_db, ...)

egt05_qtcat_post(tlg, prune_0 = TRUE, ...)

egt05_qtcat

Format

An object of class chevron_t of length 1.

Arguments

adam_db

(list of data.frames) object containing the ADaM datasets

arm_var

(string) variable used for column splitting

summaryvars

(character) variables to be analyzed. The label attribute of the corresponding column in adeg table of adam_db is used as name.

lbl_overall

(string) label used for overall column, if set to NULL the overall column is omitted

row_split_var

(character) additional row split variables.

page_var

(string) variable name prior to which the row split is by page.

visitvar

(string) typically "AVISIT" or user-defined visit incorporating "ATPT".

...

not used.

tlg

(TableTree, Listing or ggplot) object typically produced by a main function.

prune_0

(flag) remove 0 count rows

Details

  • The Value at Visit column, displays the categories of the specific "PARAMCD" value for patients.

  • The Change from Baseline column, displays the categories of the specific "PARAMCD" value change from baseline for patients.

  • Remove zero-count rows unless overridden with prune_0 = FALSE.

  • Split columns by arm, typically "ACTARM".

  • Does not include a total column by default.

  • Sorted based on factor level; by chronological time point given by "AVISIT" or user-defined visit incorporating "ATPT". Re-level to customize order.

  • Please note that it is preferable to convert summaryvars to factor.

Functions

  • egt05_qtcat_main(): Main TLG function

  • egt05_qtcat_pre(): Preprocessing

  • egt05_qtcat_post(): Postprocessing

Note

  • adam_db object must contain an adeg table with column specified in visitvar. For summaryvars, please make sure AVALCAT1 and CHGCAT1 columns existed in input data sets.

Examples

run(egt05_qtcat, syn_data)
#>   Parameter                                                            
#>     Analysis Visit            A: Drug X    B: Placebo    C: Combination
#>       Category                 (N=134)       (N=134)        (N=132)    
#>   —————————————————————————————————————————————————————————————————————
#>   QT Duration                                                          
#>     BASELINE                                                           
#>       Value at Visit                                                   
#>         n                        134           134            132      
#>         <=450 msec           115 (85.8%)   117 (87.3%)    104 (78.8%)  
#>         >450 to <=480 msec    6 (4.5%)      10 (7.5%)       9 (6.8%)   
#>         >480 to <=500 msec    4 (3.0%)      3 (2.2%)        6 (4.5%)   
#>         >500 msec             9 (6.7%)      4 (3.0%)       13 (9.8%)   
#>     WEEK 1 DAY 8                                                       
#>       Value at Visit                                                   
#>         n                        134           134            132      
#>         <=450 msec           113 (84.3%)   106 (79.1%)    106 (80.3%)  
#>         >450 to <=480 msec    10 (7.5%)     10 (7.5%)      11 (8.3%)   
#>         >480 to <=500 msec    4 (3.0%)      4 (3.0%)        3 (2.3%)   
#>         >500 msec             7 (5.2%)     14 (10.4%)      12 (9.1%)   
#>       Change from Baseline                                             
#>         n                        134           134            132      
#>         <=30 msec            76 (56.7%)    75 (56.0%)      75 (56.8%)  
#>         >30 to <=60 msec      7 (5.2%)      13 (9.7%)      11 (8.3%)   
#>         >60 msec             51 (38.1%)    46 (34.3%)      46 (34.8%)  
#>     WEEK 2 DAY 15                                                      
#>       Value at Visit                                                   
#>         n                        134           134            132      
#>         <=450 msec           111 (82.8%)   114 (85.1%)    112 (84.8%)  
#>         >450 to <=480 msec    10 (7.5%)     9 (6.7%)        9 (6.8%)   
#>         >480 to <=500 msec    7 (5.2%)      2 (1.5%)        5 (3.8%)   
#>         >500 msec             6 (4.5%)      9 (6.7%)        6 (4.5%)   
#>       Change from Baseline                                             
#>         n                        134           134            132      
#>         <=30 msec            71 (53.0%)    87 (64.9%)      89 (67.4%)  
#>         >30 to <=60 msec      11 (8.2%)     9 (6.7%)        9 (6.8%)   
#>         >60 msec             52 (38.8%)    38 (28.4%)      34 (25.8%)  
#>     WEEK 3 DAY 22                                                      
#>       Value at Visit                                                   
#>         n                        134           134            132      
#>         <=450 msec           106 (79.1%)   112 (83.6%)    118 (89.4%)  
#>         >450 to <=480 msec    13 (9.7%)     7 (5.2%)        3 (2.3%)   
#>         >480 to <=500 msec    4 (3.0%)      5 (3.7%)        2 (1.5%)   
#>         >500 msec             11 (8.2%)     10 (7.5%)       9 (6.8%)   
#>       Change from Baseline                                             
#>         n                        134           134            132      
#>         <=30 msec            63 (47.0%)    80 (59.7%)      81 (61.4%)  
#>         >30 to <=60 msec     14 (10.4%)     8 (6.0%)       11 (8.3%)   
#>         >60 msec             57 (42.5%)    46 (34.3%)      40 (30.3%)  
#>     WEEK 4 DAY 29                                                      
#>       Value at Visit                                                   
#>         n                        134           134            132      
#>         <=450 msec           117 (87.3%)   103 (76.9%)    114 (86.4%)  
#>         >450 to <=480 msec    7 (5.2%)     14 (10.4%)       6 (4.5%)   
#>         >480 to <=500 msec    4 (3.0%)      7 (5.2%)        3 (2.3%)   
#>         >500 msec             6 (4.5%)      10 (7.5%)       9 (6.8%)   
#>       Change from Baseline                                             
#>         n                        134           134            132      
#>         <=30 msec            79 (59.0%)    80 (59.7%)      79 (59.8%)  
#>         >30 to <=60 msec      11 (8.2%)     7 (5.2%)       10 (7.6%)   
#>         >60 msec             44 (32.8%)    47 (35.1%)      43 (32.6%)  
#>     WEEK 5 DAY 36                                                      
#>       Value at Visit                                                   
#>         n                        134           134            132      
#>         <=450 msec           107 (79.9%)   117 (87.3%)    112 (84.8%)  
#>         >450 to <=480 msec   16 (11.9%)     5 (3.7%)       13 (9.8%)   
#>         >480 to <=500 msec    5 (3.7%)      9 (6.7%)        3 (2.3%)   
#>         >500 msec             6 (4.5%)      3 (2.2%)        4 (3.0%)   
#>       Change from Baseline                                             
#>         n                        134           134            132      
#>         <=30 msec            72 (53.7%)    82 (61.2%)      73 (55.3%)  
#>         >30 to <=60 msec      10 (7.5%)     11 (8.2%)      11 (8.3%)   
#>         >60 msec             52 (38.8%)    41 (30.6%)      48 (36.4%)