Script_Generator
Benoit Falquet
script_generator.Rmd
Introduction
In addition of the embedded run()
method to create a
tlg
, chevron offers a script-based approach that allows the
user to quickly edit a chevron workflow without the need for modifying a
chevron_tlg
object. The script is generated as two separate
components:
script_args
method generates a script for parameters assignment based on the default value of the arguments but can be edit either manually after creation or using thedict
argument.script_funs
methods expose by default only the script corresponding to the pre processing function in the generated script. However, the main and post processing functions can also be exposed in the script with thedetails = TRUE
argument.
Using a chevron-defined object
The object returned by the script
methods are vectors of
character with one element per line of the script, that can be easily
rendered.
res <- script_args(aet01)
writeLines(res)
#>
#> # Arguments definition ----
#>
#> adam_db <- stop("missing value")
#> arm_var <- "ACTARM"
#> anl_vars <- list(safety_var = c("FATAL", "SER", "SERWD", "SERDSM",
#> "RELSER", "WD", "DSM", "REL", "RELWD", "RELDSM", "SEV"))
#> anl_lbls <- "Total number of patients with at least one"
#> prune_0 <- FALSE
res <- script_funs(aet01, adam_db = "syn_data", args = "args_list")
writeLines(res)
#> # Edit Preprocessing Function.
#> pre_fun <- function (adam_db, ...)
#> {
#> adam_db$adae <- adam_db$adae %>% filter(.data$ANL01FL ==
#> "Y") %>% mutate(FATAL = with_label(.data$AESDTH == "Y",
#> "AE with fatal outcome"), SER = with_label(.data$AESER ==
#> "Y", "Serious AE"), SEV = with_label(.data$ASEV == "SEVERE",
#> "Severe AE (at greatest intensity)"), REL = with_label(.data$AREL ==
#> "Y", "Related AE"), WD = with_label(.data$AEACN == "DRUG WITHDRAWN",
#> "AE leading to withdrawal from treatment"), DSM = with_label(.data$AEACN %in%
#> c("DRUG INTERRUPTED", "DOSE INCREASED", "DOSE REDUCED"),
#> "AE leading to dose modification/interruption"), SERWD = with_label(.data$SER &
#> .data$WD, "Serious AE leading to withdrawal from treatment"),
#> SERDSM = with_label(.data$SER & .data$DSM, "Serious AE leading to dose modification/interruption"),
#> RELSER = with_label(.data$SER & .data$REL, "Related Serious AE"),
#> RELWD = with_label(.data$REL & .data$WD, "Related AE leading to withdrawal from treatment"),
#> RELDSM = with_label(.data$REL & .data$DSM, "Related AE leading to dose modification/interruption"),
#> CTC35 = with_label(.data$ATOXGR %in% c("3", "4", "5"),
#> "Grade 3-5 AE"), CTC45 = with_label(.data$ATOXGR %in%
#> c("4", "5"), "Grade 4/5 AE"))
#> adam_db$adsl <- adam_db$adsl %>% mutate(DCSREAS = reformat(.data$DCSREAS,
#> missing_rule))
#> adam_db
#> }
#>
#> # Create TLG
#> tlg_output <- rlang::exec(.fn = pre_fun, adam_db = syn_data, !!!args_list) %>%
#> rlang::exec(.fn = run, object = aet01, !!!args_list, auto_pre = FALSE)
With a modified chevron object
The script generator depends on the functions actually stored in the
object. Modifying the chevron_tlg
object can lead to a
different script.
preprocess(aet01) <- function(adam_db, new_format, ...) {
reformat(adam_db, new_format)
}
res_args <- script_args(aet01)
res_funs <- script_funs(aet01, adam_db = "syn_data", args = "args_list")
Print the generated scripts. Note that a new argument
new_format
has been added and the pre processing function
has been modified.
writeLines(res_args)
#>
#> # Arguments definition ----
#>
#> adam_db <- stop("missing value")
#> arm_var <- "ACTARM"
#> anl_vars <- list(safety_var = c("FATAL", "SER", "SERWD", "SERDSM",
#> "RELSER", "WD", "DSM", "REL", "RELWD", "RELDSM", "SEV"))
#> anl_lbls <- "Total number of patients with at least one"
#> new_format <- stop("missing value")
#> prune_0 <- FALSE
writeLines(res_funs)
#> # Edit Preprocessing Function.
#> pre_fun <- function(adam_db, new_format, ...) {
#> reformat(adam_db, new_format)
#> }
#>
#> # Create TLG
#> tlg_output <- rlang::exec(.fn = pre_fun, adam_db = syn_data, !!!args_list) %>%
#> rlang::exec(.fn = run, object = aet01, !!!args_list, auto_pre = FALSE)
With custom argument definition
To define the value of an argument in the directly in the
script_args
method, pass it to a named list. Existing
values will be overwritten.
Note: variables (in this case the dm
object
syn_data
), have to be passed as symbol, using for instance
rlang::sym
.
dict <- list(
adam_db = rlang::sym("syn_data"),
some_character = "A",
some_vector = c("A", "B")
)
res_args <- script_args(mng01, dict = dict)
res_funs <- script_funs(mng01, adam_db = "syn_data", args = "args_list")
writeLines(res_args)
#>
#> # Arguments definition ----
#>
#> adam_db <- syn_data
#> some_character <- "A"
#> some_vector <- c("A", "B")
#> dataset <- "adlb"
#> x_var <- "AVISIT"
#> y_var <- "AVAL"
#> y_name <- "PARAM"
#> arm_var <- "ACTARM"
#> center_fun <- "mean"
#> interval_fun <- "mean_ci"
#> show_table <- TRUE
#> jitter <- TRUE
#> show_n <- TRUE
#> show_h_grid <- TRUE
#> show_v_grid <- FALSE
#> legend_pos <- "top"
#> line_col <- nestcolor::color_palette()
writeLines(res_funs)
#> # Edit Preprocessing Function.
#> pre_fun <- function (adam_db, dataset, x_var = "AVISIT", ...)
#> {
#> adam_db[[dataset]] <- adam_db[[dataset]] %>% filter(.data$ANL01FL ==
#> "Y")
#> dunlin::ls_unite(adam_db, dataset, cols = x_var, sep = "_")
#> }
#>
#> # Create TLG
#> tlg_output <- rlang::exec(.fn = pre_fun, adam_db = syn_data, !!!args_list) %>%
#> rlang::exec(.fn = run, object = mng01, !!!args_list, auto_pre = FALSE)
If saved in a .R
file, the generated script can be
executed. The result stored in tlg_output
can be
printed.
tmp_args <- tempfile("my_script_args", fileext = "R")
writeLines(res_args, con = tmp_args)
tmp_funs <- tempfile("my_script_funs", fileext = "R")
writeLines(res_funs, con = tmp_funs)
args_list <- list(
dataset = "adlb",
arm_var = "ARM"
)
data(syn_data, package = "chevron")
source(tmp_args, local = knitr::knit_global(), echo = TRUE)
#>
#> > adam_db <- syn_data
#>
#> > some_character <- "A"
#>
#> > some_vector <- c("A", "B")
#>
#> > dataset <- "adlb"
#>
#> > x_var <- "AVISIT"
#>
#> > y_var <- "AVAL"
#>
#> > y_name <- "PARAM"
#>
#> > arm_var <- "ACTARM"
#>
#> > center_fun <- "mean"
#>
#> > interval_fun <- "mean_ci"
#>
#> > show_table <- TRUE
#>
#> > jitter <- TRUE
#>
#> > show_n <- TRUE
#>
#> > show_h_grid <- TRUE
#>
#> > show_v_grid <- FALSE
#>
#> > legend_pos <- "top"
#>
#> > line_col <- nestcolor::color_palette()
source(tmp_funs, local = knitr::knit_global())
tlg_output
#> $`Alanine Aminotransferase Measurement`
#>
#> $`C-Reactive Protein Measurement`
#>
#> $`Immunoglobulin A Measurement`
#>
#> attr(,"class")
#> [1] "gg_list" "list"
Exploring Main and Post process functions
By specifying details = TRUE
the main and post
processing functions are also exposed.
res_fun <- script_funs(mng01, adam_db = "syn_data", args = "args_list", details = TRUE)
writeLines(res_fun)
#> # Edit Functions.
#> pre_fun <- function (adam_db, dataset, x_var = "AVISIT", ...)
#> {
#> adam_db[[dataset]] <- adam_db[[dataset]] %>% filter(.data$ANL01FL ==
#> "Y")
#> dunlin::ls_unite(adam_db, dataset, cols = x_var, sep = "_")
#> }
#>
#> main_fun <- function (adam_db, dataset = "adlb", x_var = "AVISIT",
#> y_var = "AVAL", y_name = "PARAM", y_unit = NULL, arm_var = "ACTARM",
#> center_fun = "mean", interval_fun = "mean_ci", show_table = TRUE,
#> jitter = TRUE, show_n = TRUE, show_h_grid = TRUE, show_v_grid = FALSE,
#> legend_pos = "top", line_col = nestcolor::color_palette(),
#> ...)
#> {
#> assert_all_tablenames(adam_db, c(dataset, "adsl"))
#> checkmate::assert_character(x_var)
#> checkmate::assert_string(y_var)
#> checkmate::assert_string(y_name)
#> checkmate::assert_string(y_unit, null.ok = TRUE)
#> checkmate::assert_string(arm_var)
#> checkmate::assert_string(center_fun)
#> checkmate::assert_string(interval_fun)
#> checkmate::assert_names(center_fun, subset.of = c("mean",
#> "median"))
#> checkmate::assert_choice(interval_fun, c("mean_ci", "mean_sei",
#> "mean_sdi", "median_ci", "quantiles", "range"))
#> checkmate::assert_flag(show_table)
#> checkmate::assert_flag(jitter)
#> checkmate::assert_flag(show_n)
#> checkmate::assert_flag(show_h_grid)
#> checkmate::assert_flag(show_v_grid)
#> checkmate::assert_choice(legend_pos, c("top", "bottom", "right",
#> "left"))
#> checkmate::assert_character(line_col, null.ok = TRUE)
#> assert_valid_variable(adam_db[[dataset]], x_var)
#> assert_valid_variable(adam_db[[dataset]], y_var, types = list(c("numeric")))
#> assert_valid_variable(adam_db[[dataset]], y_unit, types = list(c("character",
#> "factor")))
#> assert_valid_variable(adam_db[[dataset]], arm_var, types = list(c("character",
#> "factor")), na_ok = FALSE)
#> assert_valid_variable(adam_db$adsl, c("USUBJID", arm_var),
#> types = list(c("character", "factor")))
#> assert_valid_variable(adam_db[[dataset]], "USUBJID", types = list(c("character",
#> "factor")), empty_ok = TRUE)
#> assert_valid_var_pair(adam_db$adsl, adam_db[[dataset]], arm_var)
#> df <- adam_db[[dataset]]
#> line_col <- unlist(line_col)
#> data_ls <- split(df, df$PARAM, drop = TRUE)
#> x_var <- paste(x_var, collapse = "_")
#> interval_title <- switch(interval_fun, mean_ci = "95% Confidence Intervals",
#> mean_sei = "Standard Error", mean_sdi = "Standard Deviation",
#> median_ci = "95% Confidence Intervals", quantiles = "Interquatile Range",
#> range = "Min-Max Range")
#> title <- paste0("Plot of ", center_fun, " and ", interval_title,
#> " by ", var_labels_for(df, x_var))
#> whiskers_fun <- switch(interval_fun, mean_ci = c("mean_ci_lwr",
#> "mean_ci_upr"), mean_sei = c("mean_sei_lwr", "mean_sei_upr"),
#> mean_sdi = c("mean_sdi_lwr", "mean_sdi_upr"), median_ci = c("median_ci_lwr",
#> "median_ci_upr"), quantiles = c("quantiles_0.25",
#> "quantile_0.75"), range = c("min", "max"))
#> y_unit <- if (is.null(y_unit))
#> NA
#> else y_unit
#> variables <- c(x = x_var, y = y_var, strata = arm_var, paramcd = y_name,
#> y_unit = y_unit)
#> n_func <- if (show_n)
#> "n"
#> else NULL
#> table <- if (show_table)
#> c(n_func, center_fun, interval_fun)
#> else NULL
#> ggtheme <- ggplot2::theme_bw() + ggplot2::theme(legend.position = legend_pos) +
#> ggplot2::theme(axis.title.x = ggplot2::element_blank())
#> ggtheme <- if (!show_v_grid) {
#> ggtheme + ggplot2::theme(panel.grid.major.x = ggplot2::element_blank())
#> }
#> else {
#> ggtheme + ggplot2::theme(panel.grid.major.x = ggplot2::element_line(linewidth = 1))
#> }
#> ggtheme <- if (!show_h_grid) {
#> ggtheme + ggplot2::theme(panel.grid.minor.y = ggplot2::element_blank(),
#> panel.grid.major.y = ggplot2::element_blank())
#> }
#> else {
#> ggtheme + ggplot2::theme(panel.grid.minor.y = ggplot2::element_line(linewidth = 1),
#> panel.grid.major.y = ggplot2::element_line(linewidth = 1))
#> }
#> if (!is.null(names(line_col))) {
#> color_lvl <- sort(unique(df[[arm_var]]))
#> col <- line_col[as.character(color_lvl)]
#> if (anyNA(col)) {
#> missing_col <- setdiff(color_lvl, names(col))
#> stop(paste("Missing color matching for", toString(missing_col)))
#> }
#> col <- unname(col)
#> }
#> else {
#> col <- line_col
#> }
#> ret <- lapply(data_ls, tern::g_lineplot, alt_count = adam_db[["adsl"]],
#> variables = variables, mid = center_fun, interval = interval_fun,
#> whiskers = whiskers_fun, position = ggplot2::position_dodge(width = ifelse(jitter,
#> 0.3, 0)), title = title, table = table, ggtheme = ggtheme,
#> col = col, subtitle_add_unit = !is.na(y_unit))
#> do.call(gg_list, ret)
#> }
#>
#> post_fun <- function (tlg, ...)
#> {
#> tlg
#> }
#>
#> # Create TLG
#> tlg_output <- rlang::exec(.fn = pre_fun, adam_db = syn_data, !!!args_list) %>%
#> rlang::exec(.fn = main_fun, !!!args_list) %>%
#> rlang::exec(.fn = post_fun, !!!args_list)