Skip to contents

For each variable, summary statistics are by default based on the number of patients in the corresponding n row.

Usage

dmt01_1_main(
  adam_db,
  armvar = .study$planarm,
  summaryvars = .study$demo_vars,
  summaryvars_lbls = .study$demo_vars_lbls,
  lbl_overall = .study$lbl_overall,
  prune_0 = TRUE,
  deco = std_deco("DMT01"),
  .study = list(planarm = "ARM", demo_vars = c("AGE", "SEX", "COUNTRY", "RACE"),
    demo_vars_lbls = NULL, lbl_overall = "All Patients")
)

dmt01_1_lyt(
  armvar = .study$planarm,
  summaryvars = .study$demo_vars,
  summaryvars_lbls = .study$demo_vars_lbl,
  lbl_overall = .study$lbl_overall,
  deco = std_deco("DMT01"),
  .study = list(planarm = "ARM", demo_vars = c("AAGE", "AGEGR1", "SEX", "ETHNIC",
    "RACE"), demo_vars_lbl = c("Age (yr)", "Pooled Age Group 1 (yr)", "SEX", "ETHNIC",
    "RACE"), lbl_overall = "All Patients")
)

dmt01_1_pre(adam_db, ...)

dmt01_1

Format

An object of class chevron_tlg of length 1.

Arguments

adam_db

(dm) object containing the ADaM datasets

armvar

(character) variable used for column splitting

summaryvars

(vector of character) variables summarized in demographic table. Usually a vector containing the following one or more of the following: AAGE, AGEGR1, SEX, ETHNIC, RACE and by default all of them.

summaryvars_lbls

(vector of character) labels corresponding to the analyzed variables.

lbl_overall

(character) label used for overall column, if set to NULL the overall column is omitted

prune_0

(logical) remove 0 count rows

deco

(character) decoration with title, subtitles and main_footer content

.study

(list) with default values for the arguments of the function

...

not used.

demo_vars

(vector of strings) variables summarized in demographic table.

demo_vars_lbls

(vector of strings) labels corresponding to the analyzed variables.

Details

  • Information from ADSUB are generally included into ADSL before analysis.

  • Default demographic and characteristics table

  • If not specified otherwise, numbers represent absolute numbers of patients and fraction of N

  • Remove zero-count rows

  • Split columns by arm (planned or actual / code or description)

  • Include a total column by default

Functions

  • dmt01_1_main(): Main TLG function

  • dmt01_1_lyt(): Layout

  • dmt01_1_pre(): Preprocessing

Examples

library(dm)
library(magrittr)

db <- syn_test_data() %>%
  dmt01_1_pre()

dmt01_1_main(db, summaryvars = c("AGE", "RACE", "SEX"), lbl_overall = NULL)
#>                                                A: Drug X    B: Placebo    C: Combination
#>                                                 (N=134)       (N=134)        (N=132)    
#> ————————————————————————————————————————————————————————————————————————————————————————
#> Age                                                                                     
#>   n                                               134           134            132      
#>   Mean (SD)                                   33.8 (6.6)    35.4 (7.9)      35.4 (7.7)  
#>   Median                                         33.0          35.0            35.0     
#>   Min - Max                                   21.0 - 50.0   21.0 - 62.0    20.0 - 69.0  
#> Race                                                                                    
#>   n                                               134           134            132      
#>   ASIAN                                       68 (50.7%)     67 (50%)       73 (55.3%)  
#>   BLACK OR AFRICAN AMERICAN                   31 (23.1%)    28 (20.9%)      32 (24.2%)  
#>   WHITE                                       27 (20.1%)    26 (19.4%)      21 (15.9%)  
#>   AMERICAN INDIAN OR ALASKA NATIVE              8 (6%)       11 (8.2%)       6 (4.5%)   
#>   MULTIPLE                                         0         1 (0.7%)           0       
#>   NATIVE HAWAIIAN OR OTHER PACIFIC ISLANDER        0         1 (0.7%)           0       
#> Sex                                                                                     
#>   n                                               134           134            132      
#>   Female                                       79 (59%)     82 (61.2%)       70 (53%)   
#>   Male                                         55 (41%)     52 (38.8%)       62 (47%)   
dmt01_1_main(db,
  summaryvars = c("AGE", "RACE", "SEX"),
  summaryvars_lbls = c("Age (yr)", "Race", "Sex")
)
#>                                                A: Drug X    B: Placebo    C: Combination   All Patients
#>                                                 (N=134)       (N=134)        (N=132)         (N=400)   
#> ———————————————————————————————————————————————————————————————————————————————————————————————————————
#> Age (yr)                                                                                               
#>   n                                               134           134            132             400     
#>   Mean (SD)                                   33.8 (6.6)    35.4 (7.9)      35.4 (7.7)      34.9 (7.4) 
#>   Median                                         33.0          35.0            35.0            34.0    
#>   Min - Max                                   21.0 - 50.0   21.0 - 62.0    20.0 - 69.0     20.0 - 69.0 
#> Race                                                                                                   
#>   n                                               134           134            132             400     
#>   ASIAN                                       68 (50.7%)     67 (50%)       73 (55.3%)      208 (52%)  
#>   BLACK OR AFRICAN AMERICAN                   31 (23.1%)    28 (20.9%)      32 (24.2%)      91 (22.8%) 
#>   WHITE                                       27 (20.1%)    26 (19.4%)      21 (15.9%)      74 (18.5%) 
#>   AMERICAN INDIAN OR ALASKA NATIVE              8 (6%)       11 (8.2%)       6 (4.5%)       25 (6.2%)  
#>   MULTIPLE                                         0         1 (0.7%)           0            1 (0.2%)  
#>   NATIVE HAWAIIAN OR OTHER PACIFIC ISLANDER        0         1 (0.7%)           0            1 (0.2%)  
#> Sex                                                                                                    
#>   n                                               134           134            132             400     
#>   Female                                       79 (59%)     82 (61.2%)       70 (53%)      231 (57.8%) 
#>   Male                                         55 (41%)     52 (38.8%)       62 (47%)      169 (42.2%) 
dmt01_1_lyt(armvar = "ACTARM")
#> A Pre-data Table Layout
#> 
#> Column-Split Structure:
#> ACTARM (lvls) 
#>  (all obs) 
#> 
#> Row-Split Structure:
#> DOMAIN (lvls) -> AAGE:AGEGR1:SEX:ETHNIC:RACE (** multivar analysis **) 
#> 
dmt01_1_pre(syn_test_data())
#> ── Metadata ────────────────────────────────────────────────────────────────────
#> Tables: `adsl`, `adae`, `adaette`, `adcm`, `addv`, … (15 total)
#> Columns: 847
#> Primary keys: 2
#> Foreign keys: 1